Honeywell

User Manual

SmartVFD COMPACT

Variable Frequency Drives for Constant and Variable Torque Applications

User's Manual

Index

1. SAFETY	
1.1 Warnings	
1.2 Safety instructions	.5
1.3 Grounding and Ground fault protection	.5
1.4 Before running the motor	
2. RECEIPT OF DELIVERY	
2.1 Type designation code	
2.2 Storage	.8
2.3 Maintenance	
2.4 Warranty 3. TECHNICAL DATA	
3.1 SmartVFD COMPACT technical data	.9
3.2 Power ratings	.9
3.2.1 SmartVFD COMPACT - Mains voltage 208 - 240 V, 1~	. 1 1
3.2.2 SmartVFD COMPACT - Mains voltage 208 - 240 V, 1~	. 1 1
3.2.3 SmartVFD COMPACT - Mains voltage 115 V, 1~	.12
3.2.4 SmartVFD COMPACT - Mains voltage 380 - 480 V, 3~	
3.2.5 SmartVFD COMPACT - Mains voltage 600 V, 3~	
4. INSTALLATION	
4.1 Mechanical installation	.14
4.1.1 SmartVFD COMPACT dimensions	
4.1.2 Cooling	
4.1.3 EMC levels	
4.1.4 Changing the EMC protection class from C2 or C3 to C	
for IT networks	
4.2 Cabling and connections	
4.2.1 Power cabling	
4.2.2 Control cabling	. 19
4.2.3 Cable and fuse specifications	
4.2.4 General cabling rules	
4.2.5 Stripping lengths of motor and mains cables	
4.2.6 Cable installation and the UL standards	
4.2.7 Cable and motor insulation checks	
5. COMMISSIONING	.25
5.1 Commissioning steps of SmartVFD COMPACT 6. SMARTVFD COMPACTFAULT TRACING	.25
6. SMARTVFD COMPACTFAULT TRACING	.27
7. SMARTVFD COMPACT APPLICATION INTERFACE	.31
7.1 Introduction	
7.2 Control I/O	
8. CONTROL PANEL	.35

1	8.1 General 8.2 Display 8.3 Keypad 8.4 Navigation on the SmartVFD COMPACT control panel	35
	8.4.1 Main menu	
	8.4.2 Reference menu	
	8.4.3 Monitoring menu	38
	8.4.4 Parameter menu	
	8.4.5 Fault history menu	
9. GE	ENERAL PURPOSE APPLICATION PARAMETERS	42
	9.1 Quick setup parameters (Virtual menu, shows when par.13.1 1)	43
	9.2 Motor settings (Control panel: Menu PAR -> P1)	
	9.3 Start/stop setup (Control panel: Menu PAR -> P2)	
5	9.4 Frequency references (Control panel: Menu PAR -> P3)	46
5	9.5 Ramps and brakes setup (Control panel: Menu PAR -> P4)	47
	9.6 Digital inputs (Control panel: Menu PAR -> P5)	
	9.8 Digital and analogue outputs(Control panel: Menu PAR -> P6)	
	9.9 Protections (Control panel: Menu PAR -> P9)	
	9.10 Autorestart parameters (Control panel: Menu PAR -> P10).	
	9.11 PI control parameters (Control panel: Menu PAR -> P12)	
	9.12 Easy usage menu (Control panel: Menu PAR -> P0)	
9	9.13 System parameters	54
	PARAMETER DESCRIPTIONS	
	10.1 Motor settings (Control panel: Menu PAR -> P1)	
	10.2 Start/Stop setup (Control panel: Menu PAR -> P2)	
	10.3 Frequency references (Control panel: Menu PAR -> P3)	62
	10.4 Ramps & brakes setup (Control panel: Menu PAR -> P4) 10.5 Digital inputs (Control panel: Menu PAR -> P5)	
	10.6 Analogue inputs (Control panel: Menu PAR -> P6)	
	10.7 Digital and analoque outputs (Control panel: Menu PAR -> F	
	10.8 Motor thermal protection (parameters 9.7 - 9.10)	70
	10.9 fault Autorestart parameters (Control panel: Menu PAR -> P	
	74	
	10.10 PI control parameters (Control panel: Menu PAR -> P12).	
	10.11 Easy usage menu (Control panel: Menu PAR -> P9)	76
	10.12 Fieldbus parameters (Control panel: Menu PAR -> S2) 10.12.1 Termination resistor	78
	10.12.1 Termination resistor	
	10.12.3 Modbus process data	19

1. SAFETY

ONLY A COMPETENT ELECTRICIAN IS ALLOWED TO CARRY OUT THE ELECTRICAL INSTALLATION!

This manual contains clearly marked cautions and warnings which are intended for your personal safety and to avoid any unintentional damage to the product or connected appliances.

Please read the information included in cautions and warnings carefully:

= Dangerous voltage Risk of death or severe injury

= General warning Risk of damage to the product or connected appliances

1.1 WARNINGS

1	The components of the power unit of the frequency converter are live when SmartVFD COMPACT is connected to mains potential. Coming into contact with this voltage is extremely dangerous and may cause death or severe injury. The control unit is isolated from the mains potential.
2	The motor terminals U, V, W (T1, T2, T3) and the possible brake resistor terminals -/+ are live when SmartVFD COMPACT is connected to mains, even if the motor is not running.
3	The control I/O-terminals are isolated from the mains potential. However, the relay output terminals may have a dangerous control voltage present even when SmartVFD COMPACT is disconnected from mains.
4	The ground leakage current of SmartVFD COMPACT frequency converters exceeds 3.5mA AC. According to standard EN61800-5- 1, a reinforced protective ground connection must be ensured.
5	If the frequency converter is used as a part of a machine, the machine manufacturer is responsible for providing the machine with a main switch (EN 60204-1).

	6	If SmartVFD COMPACT is disconnected from mains while running the motor, it remains live if the motor is energized by the process. In this case the motor functions as a generator feeding energy to the frequency converter.
\mathbb{A}	7	After disconnecting the frequency converter from the mains, wait until the fan stops and the indicators on the display go out. Wait 5 more minutes before doing any work on SmartVFD COMPACT connections.

1.2 SAFETY INSTRUCTIONS

	1	The SmartVFD COMPACT frequency converter has been designed for fixed installations only.
\triangle	2	Do not perform any measurements when the frequency converter is connected to the mains.
\wedge	3	Do not perform any voltage withstand tests on any part of Smart- VFD COMPACT. The product safety is fully tested at factory.
\wedge	4	Prior to making resistance measurements on the motor or the motor cable, disconnect the motor cable from the frequency con- verter.
\wedge	5	Do not open the cover of SmartVFD COMPACT. Static voltage dis- charge from your fingers may damage the components. Opening the cover may also damage the device. If the cover of SmartVFD COMPACT is opened, warranty becomes void.

1.3 GROUNDING AND GROUND FAULT PROTECTION

The SmartVFD COMPACT frequency converter **must always** be grounded with an grounding conductor connected to the grounding terminal. See figure below:

- The ground fault protection inside the frequency converter protects only the converter itself against ground faults.
- If fault current protective switches are used they must be tested with the drive with ground fault currents that are possible to arise in fault situations.

1.4 BEFORE RUNNING THE MOTOR

Checklist:

Before starting the motor, check that the motor is mounted properly and ensure that the machine connected to the motor allows the motor to be started.

Set the maximum motor speed (frequency) according to the motor and the machine connected to it.

Before reversing the motor shaft rotation direction make sure that this can be done safely.

Make sure that no power correction capacitors are connected to the motor cable.

2. RECEIPT OF DELIVERY

After unpacking the product, check that no signs of transport damages are to be found on the product and that the delivery is complete (compare the type designation of the product to the code below).

Should the drive have been damaged during the shipping, please contact primarily the cargo insurance company or the carrier.

If the delivery does not correspond to your order, contact the supplier immediately.

2.1 TYPE DESIGNATION CODE

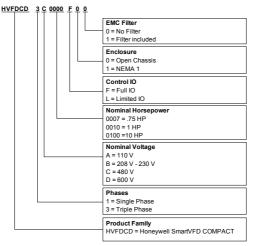


Figure 2.1: SmartVFD COMPACT type designation code

2.2 STORAGE

If the frequency converter is to be kept in store before use make sure that the ambient conditions are acceptable:

Storing temperature -40°F (-40°C)...+70°F (21°C)

Relative humidity < 95%, no condensation

2.3 MAINTENANCE

In normal operating conditions, SmartVFD COMPACT frequency converters are maintenance-free.

2.4 WARRANTY

Only manufacturing defects are covered by the warranty. The manufacturer assumes no responsibility for damages caused during or resulting from transport, receipt of the delivery, installation, commissioning or use.

The manufacturer shall in no event and under no circumstances be held responsible for damages and failures resulting from misuse, wrong installation, unacceptable ambient temperature, dust, corrosive substances or operation outside the rated specifications. Neither can the manufacturer be held responsible for consequential damages.

Variable frequency drive devices (VFD) and accessories: new products for thirty-six (36) months and factory refurbished drives for twelve (12) months from date of installation when start-up and commissioning is performed by Honeywell VFD Authorized and trained personnel. All VFD warranty return products must have prior authorization (Form No. 87-0284) and be returned only to the VFD Service Center in Chattanooga, TN.

3. TECHNICAL DATA

3.1 SMARTVFD COMPACT TECHNICAL DATA

	Frame	H (in)	W (in)	D (in)	Weight (lb)	
Dimensions	MI1	6.1	2.6	3.9	1.2	
and weight	MI2	7.7	3.5	4.0	1.5	
	MI3	10.3	3.9	4.3	2.18	
Mains connection	Input voltage U _{in}	115V, -15%+10% 1~ 208240V, -15%+10% 1~ 208240V, -15%+10% 3~ 380 - 480V, -15%+10% 3~ 600V, -15%+10% 3~				
	Input frequency	4566	Hz			
	Line current THD	> 120%				
	Connection to mains		er minute or		,	
Supply network	Networks		D COMPA			
Supply network	Short circuit current	Maximu 50kA	m short circ	uit current l	has to be <	
	Output voltage	0 - U _{in}				
Motor	Output current	Continuous rated current I _N at ambient tem- perature max.122°F(+50°C)(depends on the unit size), overload 1.5 x I _N max. 1min/10mir				
connection	Starting current / torque	Current 2 x I_N for 2 secs in every 20 sec period. Torque depends on motor				
	Output frequency	0320 Hz				
	Frequency resolution	0,01 Hz				
	Control method		cy Control		Control	
	Switching frequency	1,516	kHz; Factor	y default 6	kHz	
	Frequency reference	Resoluti	on 0.01 Hz			
Control	Field weakening point	30320) Hz			
characteristics	Acceleration time	0.130	00 sec			
	Deceleration time	0.130	00 sec			
	Braking torque				ly in 3~ drives thout brake	

Table 3.1 : SmartVFD COMPACT technical data

	Ambient operating temperature	14°F(-10°C) (no frost)+104/122°F(+40/ 50°C)(depends on the unit size): rated loadability I_N				
	Storage temperature	-40°F(-40°C)+158°F(+70°C)				
	Relative humidity	095% RH, non-condensing, non-corro- sive, no dripping water				
	Air quality: chemical vapours mech. particles	IEC 721-3-3, unit in operation, class 3C2 IEC 721-3-3, unit in operation, class 3S2				
Ambient conditions	Altitude	100% load capacity (no derating) up to 1000m(3281ft), 1% derating for each 100m(3281ft) above 1000m (3281ft); max. 2000m (6562ft)				
	Vibration: EN60068-2-6	3150 Hz Displacement amplitude 1(peak) mm at 315.8 Hz Max acceleration amplitude 1 G at 15.8150 Hz				
	Shock IEC 68-2-27	UPS Drop Test (for applicable UPS weights) Storage and shipping: max 15 G, 11 ms (in package)				
	Enclosure class	IP20 (Open Chassis), option: NEMA 1				
	Pollution degree	PD2				
	Immunity	Complies with EN50082-1, -2, EN61800-3				
EMC	Emissions	115V: Complies with EMC category C4 230V: Complies with EMC category C2; With an internal RFI filter 400V: Complies with EMC category C2; With an internal RFI filter 600V: Complies with EMC category C4 AII: No EMC emission protection (Honeywell level N): Without RFI filter				
Standards		For EMC: EN61800-3, For safety: UL508C, EN61800-5-1				
Certificates and manufacturer's declarations of conformity		For safety: CB, CE, UL, cUL, For EMC: CE, CB, c-tick (see unit nameplate for more detailed approvals)				

3.2 POWER RATINGS

3.2.1 SmartVFD COMPACT - Mains voltage 208 - 240 V, 1~

Mains voltage 208-240 V, 50/60 Hz, 1~ series						
Product code	Rated lo	oadability	Motor shaft power	Nominal input current	Mechanical size and	
	100% contin. current I _N [A]	150% overload current [A]	P [HP]	[A]	weight (lb)	
HVFDCD1B0003xxx	1.7	2.6	0.25	4.2	MI1 1.2	
HVFDCD1B0005xxx	2.4	3.6	0.5	5.7	MI1 1.2	
HVFDCD1B0007xxx	2.8	4.2	0.75	6.6	MI1 1.2	
HVFDCD1B0010xxx	3.7	5.6	1	8.3	MI2 1.5	
HVFDCD1B0015xxx	4.8	7.2	1.5	11.2	MI2 1.5	
HVFDCD1B0020xxx	7.0	10.5	2	14.1	MI2 1.5	
HVFDCD1B0030xxx	9.6	14.4	3	15.8	MI3 2.18	

Table 3.2 : SmartVFD COMPACT power ratings, 208 - 240 V, 1~

3.2.2 SmartVFD COMPACT - Mains voltage 208 - 240 V, 3~

Mains voltage 208-240 V, 50/60 Hz, 3~ series						
Product code	Rated lo	oadability	Motor shaft power	Nominal input current	Mechanical size and	
	100% contin. current I _N [A]	150% overload current [A]	P[HP]	[A]	weight (lb)	
HVFDCD3B0003xxx	1.7	2.6	0.33	2.7	MI1 1.2	
HVFDCD3B0005xxx	2.4	3.6	0.5	3.5	MI1 1.2	
HVFDCD3B0007xxx	2.8	4.2	0.75	3.8	MI1 1.2	
HVFDCD3B0010xxx	3.7	5.6	1	4.3	MI2 1.5	
HVFDCD3B0015xxx	4.8	7.2	1.5	6.8	MI2 1.5	
HVFDCD3B0020xxx	7.0	10.5	2	8.4	MI2 1.5	
HVFDCD3B0030xxx	11	16.5	3	13.4	MI3 2.18	

Table 3.3 : SmartVFD COMPACT power ratings 208 - 240 V, 3~

Mains voltage 115 V, 50/60 Hz, 1~ series						
	Rated lo	oadability	Motor shaft power	Nominal input current	Mechanical	
Product code	100% continuous current I _N [A]	150% overload current [A]	380- 480V supply P[HP]	[A]	size and weight (lb)	
HVFDCD1A0003xxx	1.7	2.6	0.33	9.2	MI2 1.5	
HVFDCD1A0005xxx	2.4	3.6	0.5	11.6	MI2 1.5	
HVFDCD1A0007xxx	2.8	4.2	0.75	12.4	MI2 1.5	
HVFDCD1A0010xxx	3.7	5.6	1	15	MI2 1.5	
HVFDCD1A0015xxx	4.8	7.2	1.5	16.5	MI3 2.18	

3.2.3 SmartVFD COMPACT - Mains voltage 115 V, 1~

Table 3.4 : SmartVFD COMPACT power ratings 115 V, 1~

Note! The output voltage of the 115 V drives is 230 V.

3.2.4 SmartVFD COMPACT - Mains voltage 380 - 480 V, 3~

Mains voltage 380-480 V, 50/60 Hz, 3~ series						
	Rated lo	oadability	Motor shaft power	Nominal input current	Mechanical	
Product code	100% continuous current I _N [A]	150% overload current [A]	380- 480V supply P[HP]	[A]	size and weight (lb)	
HVFDCD3C0005xxx	1.3	2.0	0.5	2.2	MI1 1.2	
HVFDCD3C0007xxx	1.9	2.9	0.75	2.8	MI1 1.2	
HVFDCD3C0010xxx	2.4	3.6	1	3.2	MI1 1.2	
HVFDCD3C0015xxx	3.3	5.0	1.5	4.0	MI2 1.5	
HVFDCD3C0020xxx	4.3	6.5	2	5.6	MI2 1.5	
HVFDCD3C0030xxx	5.6	8.4	3	7.3	MI2 1.5	
HVFDCD3C0040xxx	7.6	11.4	4	9.6	MI3 2.18	
HVFDCD3C0050xxx	9.0	13.5	5	11.5	MI3 2.18	
HVFDCD3C0075xxx	12.0	18.0	7.5	14.9	MI3 2.18	

Table 3.5 : SmartVFD COMPACT power ratings, 380 - 480 V, 1~

3.2.5 SmartVFD COMPACT - Mains voltage 600 V, 3~

Mains voltage 600 V, 50/60 Hz, 3~ series						
Product code	Rated loadability Shaft input power current		ted loadability shaft		Mechanical size and	
	100% contin. current I _N [A]	150% overload current [A]	P[HP]	[A]	weight (lb)	
HVFDCD3D0010xxx	1.7	2.6	1	2	MI3 2.18	
HVFDCD3D0020xxx	2.7	4.1	2	3.6	MI3 2.18	
HVFDCD3D0030xxx	3.9	5.9	3	5	MI3 2.18	
HVFDCD3D0055xxx	6.1	9.2	5.4	7.6	MI3 2.18	
HVFDCD3D0075xxx	9	13.5	7.5	10.4	MI3 2.18	

Table 3.6 : SmartVFD COMPACT power ratings 600 V, 3~

Note 1: The input currents are calculated values with 100 kVA line transformer supply.

Note 2: The mechanical dimensions of the units are given in Chapter 4.1.1.

4. INSTALLATION

4.1 MECHANICAL INSTALLATION

There are two possible ways to mount the SmartVFD COMPACT to the wall; either screw or DIN-rail mounting. The mounting dimensions are given on the back of the drive and on the following page.

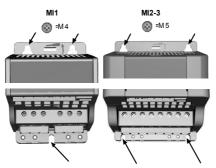


Figure 4.1: Screw mounting

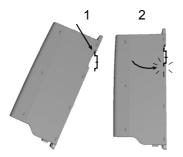
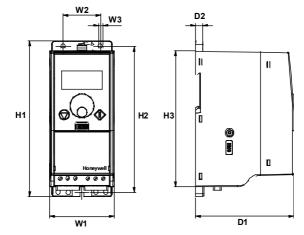



Figure 4.2: DIN-rail mounting

4.1.1 SmartVFD COMPACT dimensions

Туре	H1	H2	H3	W1	W2	W3	D1	D2
MI1	6.2	5.8	5.4	2.6	1.5	0.2	3.9	0.3
MI2	7.7	7.2	6.7	3.5	2.5	0.2	4	0.3
MI3	10.3	9.9	9.5	3.9	3.0	0.2	4.3	0.3

Table 4.1 : SmartVFD COMPACT dimensions in inches

4.1.2 Cooling

Forced air flow cooling is used in all SmartVFD COMPACT drives.

Enough free space must be left above and below the frequency converter to ensure sufficient air circulation and cooling. The required dimensions for free space are given in the table below:

Туре	Dimensions (inch)				
	A	В			
MI1	3.9	2.0			
MI2	3.9	2.0			
MI3	3.9	2.0			

Table 4.2 : Dimensions required for cooling

Туре	Cooling air required (CFM)
MI1	5.89
MI2	5.89
MI3	17.7

Table 4.3 : Required cooling air

4.1.3 EMC levels

SmartVFD COMPACT frequency converters are divided into five classes according to the level of electromagnetic disturbances emitted, the requirements of a power system network and the installation environment (see below). The EMC class of each product is defined in the type designation code.

Category C1: Frequency converters of this class comply with the requirements of category C1 of the product standard EN 61800-3 (2004). Category C1 ensures the best EMC characteristics and it includes converters the rated voltage of which is less than 1000V and which are intended for use in the 1st environment.

NOTE: The requirements of class C are fulfilled only as far as the conducted emissions are concerned.

Category C2: Frequency converters of this class comply with the requirements of category C2 of the product standard EN 61800-3 (2004). Category C2 includes converters in fixed installations and the rated voltage of which is less than 1000V. The class H frequency converters can be used both in the 1st and the 2nd environment.

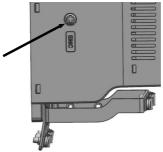
Category C3: Frequency converters of this class comply with the requirements of category C3 of the product standard EN 61800-3 (2004). Cateory C3 includes converters the rated voltage of which is less than 1000V and which are intended for use in the second environment only. **Category C4:** The drives of this class do not provide EMC emission protection. These kinds of drives are mounted in enclosures.

Category C4 for IT networks: Frequency converters of this class fulfil the product standard EN 61800-3 (2004) if intended to be used in IT systems. In IT systems, the networks are isolated from earth, or connected to earth through high impedance to achieve a low leakage current. NOTE: if converters are used with other supplies, no EMC requirements are complied with.

Environments in product standard EN 61800-3 (2004)

First environment: Environment that includes domestic premises. It also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for domestic purposes.

NOTE: houses, apartments, commercial premises or offices in a residential building are examples of first environment locations.


Second environment: Environment that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes.

NOTE: industrial areas, technical areas of any building fed from a dedicated transformer are examples of second environment locations.

4.1.4 Changing the EMC protection class from C2 or C3 to C4 for IT networks

The EMC protection class of SmartVFD COMPACT frequency converters can be changed from class C2 or C3 to class C4 for IT networks by **removing the EMC**capacitor disconnecting screw, see figure below.

Note! Do not attempt to change the EMC level back to class C2 or C3. Even if the procedure above is reversed, the frequency converter will no longer fulfil the EMC requirements of class C2/C3!!

4.2 CABLING AND CONNECTIONS

4.2.1 Power cabling

Note! Tightening torque for power cables is 4 - 5 in-lbs.

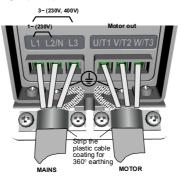


Figure 4.4: SmartVFD COMPACT power connections, MI1

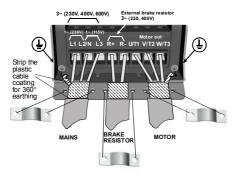


Figure 4.5: SmartVFD COMPACT power connections, MI2 - MI3

4.2.2 Control cabling

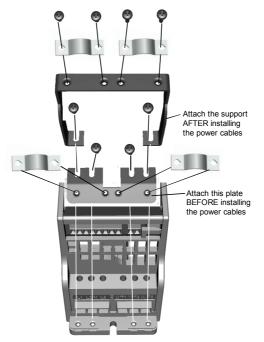


Figure 4.6: Mount the PE- plate and API cable support

Δ

Figure 4.7: Open the lid

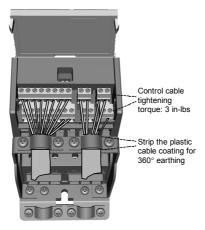


Figure 4.8: Install the control cables. See Chapter 7.2

4.2.3 Cable and fuse specifications

Use cables with heat resistance of at least 158°F (+70°C). The cables and the fuses must be dimensioned according to the tables below. Installation of cables according to UL regulations is presented in Chapter 4.2.6.

The fuses function also as cable overload protection.

These instructions apply only to cases with one motor and one cable connection from the frequency converter to the motor. In any other case, ask the factory for more information.

EMC class	Level H	Level L	Level N
Mains cable types	1	1	1
Motor cable types	3	2	1
Control cable types	4	4	4

Table 4.4 : Cable types required to meet standards. EMC levels are described in Chapter 4.1.3

Cable type	Description
1	Power cable intended for fixed installation and the specific mains voltage. Shielded cable not required. (NKCABLES/MCMK or similar recommended)
2	Power cable equipped with concentric protection wire and intended for the specific mains voltage. (NKCABLES /MCMK or similar recommended).
3	Power cable equipped with compact low-impedance shield and intended for the specific mains voltage. (NKCABLES /MCCMK, SAB/ÖZCUY-J or similar recom- mended). "360° grounding of both motor and FC connection required to meet the standard
4	Screened cable equipped with compact low-impedance shield (NKCABLES /Jamak, SAB/ÖZCuY-O or similar).

Table 4.5 : Cable type descriptions

			_	Mains	Termi	nal cable	size (min	/max)
Frame	Туре	I _N [A]	Fuse [A]	cable Cu [AWG]	Main terminal [AWG]	Ground terminal [AWG]	Control terminal [AWG]	Relay terminal [AWG]
MI1	P25 - P75	1,7-3,7	10	2*15+15	15-11	15-11	20-15	20-15
MI2	1P1 - 1P5	4,8-7,0	20	2*13+13	15-11	15-11	20-15	20-15
MI3	2P2	11	32	2*9+9	15-9	15-9	20-15	20-15

Table 4.6 : Cable and fuse sizes for SmartVFD COMPACT, 208 - 240V

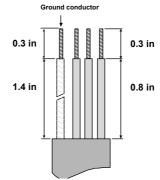

					Mains	Termi	nal cable	size (min	/max)
Frai	ne	Туре	I _N [A]	Fuse [A]	cable Cu [AWG]	Main terminal [AWG]	Ground terminal [AWG]	Control terminal [AWG]	Relay terminal [AWG]
M	11	P37 - 1P1	1,9-3,3	6	3*15+15	15-11	15-11	20-15	20-15
M	12	1P5 - 2P2	4,3-5,6	10	3*15+15	15-11	15-11	20-15	20-15
М	13	3P0 - 5P5	7,6 -12	20	3*13+13	15-9	15-9	20-15	20-15

Table 4.7 : Cable and fuse sizes for SmartVFD COMPACT, 380 - 480V

Note! To fulfil standard EN61800-5-1, the protective conductor should be at least AWG 7 Cu or AWG 5 AI. Another possibility is to use an additional protective conductor of at least the same size as the original one.

4.2.4 General cabling rules

1	Before starting the installation, check that none of the components of the frequency converter is live.
2	 Place the motor cables sufficiently far from other cables: Avoid placing the motor cables in long parallel lines with other cables If the motor cable runs in parallel with other cables, the minimum distance between the motor cable and other cables is 11.8 inches. The given distance also applies between the motor cables and signal cables of other systems. The maximum length of the motor cables is 100 feet. The motor cables should cross other cables at an angle of 90 degrees.
3	If cable insulation checks are needed, see Chapter 4.2.7.
4	 Connecting the cables: Strip the motor and mains cables as advised in Figure 4.9. Connect the mains, motor and control cables into their respective terminals, see Figures 4.4 - 4.8. Note the tightening torques of power cables and control cables given in page 18 and page 20. For information on cable installation according to UL regulations see Chapter 4.2.6. Make sure that the control cable wires do not come in contact with the electronic components of the unit. If an external brake resistor (option) is used, connect its cable to the appropriate terminal. Check the connection of the ground cable to the motor and the frequency converter terminals marked with Connect the separate shield of the motor cable to the ground plate of the frequency converter, motor and the supply centre

4.2.5 Stripping lengths of motor and mains cables

Figure 4.9: Stripping of cables

Note! Strip also the plastic cover of the cables for 360 degree grounding. See Figures 4.4, 4.5 and 4.8.

4.2.6 Cable installation and the UL standards

To meet the UL (Underwriters Laboratories) regulations, a UL-approved copper cable with a minimum heat-resistance of 140/167°F (+60/75°C) must be used.

Use Class 1 wire only.

The units are suitable for use on a circuit capable of delivering not more than 50,000 rms symmetrical amperes, 600 V maximum, when protected by T and J Class fuses.

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electric Code and any additional local codes. Branch circuit protection provided by fuses only.

Motor overload protection provided at 110% of full load current.

4.2.7 Cable and motor insulation checks

These checks can be performed as follows if motor or cable insulations are suspected to be faulty.

1. Motor cable insulation checks

Disconnect the motor cable from terminals U/T1, V/T2 and W/T3 of the frequency converter and from the motor. Measure the insulation resistance of the motor cable between each phase conductor as well as between each phase conductor and the protective ground conductor.

The insulation resistance must be >1MOhm.

2. Mains cable insulation checks

Disconnect the mains cable from terminals L1, L2/N and L3 of the frequency converter and from the mains. Measure the insulation resistance of the mains cable between each phase conductor as well as between each phase conductor and the protective ground conductor. The insulation resistance must be >1MOhm.

3. Motor insulation checks

Disconnect the motor cable from the motor and open the bridging connections in the motor connection box. Measure the insulation resistance of each motor winding. The measurement voltage must equal at least the motor nominal voltage but not exceed 1000 V. The insulation resistance must be > 1MOhm.

5. COMMISSIONING

Before commissioning, note the warnings and instructions listed in Chapter 1!

5.1 COMMISSIONING STEPS OF SMARTVFD COMPACT


1	Read carefully the safety instructions in Chapter 1 and follow them.					
2	 After the installation, make sure that: both the frequency converter and the motor are grounded. the mains and motor cables comply with the requirements given in Chapter 4.2.3. the control cables are located as far as possible from the power cables (see Chapter 4.2.4, step 2) and the shields of the shielded cables are connected to protective ground. 					
3	Check the quality and quantity of cooling air (Chapter 4.1.2).					
4	Check that all Start/Stop switches connected to the I/O terminals are in ${\ensuremath{\textbf{Stop}}}\xspace$ position.					
5	Connect the frequency converter to mains.					
Note	e: The following steps are valid if you have API Full or API Limited Application Interface in your SmartVFD COMPACT.					
6	Set the parameters of group 1 according to the requirements of your application. At least the following parameters should be set: • motor nominal voltage (par. 1.1) • motor nominal frequency (par. 1.2) • motor nominal speed (par. 1.3) • motor nominal current (par. 1.4) You will find the values needed for the parameters on the motor rating plate.					

	Perform test run without motor. Perform either Test A or Test B:
7	 A) Control from the I/O terminals: Turn the Start/Stop switch to ON position. Change the frequency reference (potentiometer). Check in the Monitoring Menu that the value of Output frequency changes according to the change of frequency reference. Turn the Start/Stop switch to OFF position.
	 B) Control from the keypad: Select the keypad as the control place with par 2.5. You can also move to keypad control by pressing the navigation wheel for 5 seconds. Push the Start button on the keypad. Check in the Monitoring Menu that the value of Output frequency changes according to the change of frequency reference. Push the Stop button on the keypad.
8	 Run the no-load tests without the motor being connected to the process, if possible. If this is not possible, secure the safety of each test prior to running it. Inform your co-workers of the tests. Switch off the supply voltage and wait up until the drive has stopped. Connect the motor cable to the motor and to the motor cable terminals of the frequency converter. See to that all Start/Stop switches are in Stop positions. Switch the mains ON. Repeat test 7A or 7B.
9	Perform an identification run (see par. 1.18), especially if the application requires a high startup torque or a high torque with low speed.
10	Connect the motor to the process (if the no-load test was run without the motor being connected) • Before running the tests, make sure that this can be done safely. • Inform your co-workers of the tests. • Repeat test 7A or 7B.

6. SMARTVFD COMPACTFAULT TRACING

Note: The fault codes listed in this chapter are visible if the Application Interface has a display, like e.g. in API FULL or API LIMITED or if a personal computer has been connected to the drive.

When a fault is detected by the frequency converter control electronics, the drive is stopped and the symbol F together with the ordinal number of the fault and the fault code appear on the display in the following format, e.g:

The fault can be reset by pressing the Stop button on the control keypad or via the *I*/ O terminal or fieldbus. The faults with time labels are stored in the Fault history menu which can be browsed. The different fault codes, their causes and correcting actions are presented in the table below.

Fault code	Fault name	Possible cause	Correcting actions
1	Overcurrent	Frequency converter has detected too high a current (>4*1 _N) in the motor cable: • Sudden heavy load increase • Short circuit in motor cables • Unsuitable motor	Check loading. Check motor size. Check cables.
2	Overvoltage	The DC-link voltage has exceeded the internal safety limit: • Too short a deceleration time • High overvoltage spikes in mains	Increase the deceleration time (P.4.3).
3	Earth fault	Current measurement has detected extra leakage current at start: • Insulation failure in cables or motor	Check motor cables and motor.

Table 6.1 : Fault codes

Fault Tracing

Fault code	Fault name	Possible cause	Correcting actions
8	System fault	Component failure Faulty operation	Reset the fault and restart. Should the fault re-occur, contact the distributor near to you. NOTE: If fault F8 occurs, find out the subcode of the fault from the Fault History menu under M (minutes)!
9	Undervoltage Undervoltage		In case of temporary supply voltage break reset the fault and restart the frequency converter. Check the supply voltage. If it is adequate, an internal failure has occurred. Contact the distributor near to you.
11	Output phase supervision Current measurement has detected that there is no current in one motor phase		Check motor cable and motor.
13	Frequency con- verter undertem- perature	Heat sink temperature is under - 10°C	Check the ambient temper- ature.
14	Frequency con- verter overtem- perature	Heat sink is overheated.	Check that the cooling air flow is not blocked. Check the ambient temper- ature. Make sure that the switch- ing frequency is not too high in relation to ambient temperature and motor load.
15	Motor stalled Motor stall protection has tripped		Check that the motor is able to rotate freely
16	Motor overtem- perature	Motor overheating has been detected by frequency converter motor temperature model. Motor is overloaded	Decrease the motor load If no motor overload exists, check the temperature model parameters.
17	Motor Underload Motor underload protection has tripped		Check motor and load, e.g. for broken belts or dry pumps

Table 6.1 : Fault codes

Fault code	Fault name	Possible cause	Correcting actions
22	EEPROM check- sum fault	Parameter save fault • Faulty operation • Component failure	Contact the distributor near to you.
25	Microcontroller watchdog fault	Faulty operation Component failure	Reset the fault and restart. Should the fault re-occur, contact the distributor near to you.
27	Back EMF pro- tection	Drive has detected that the magnetized motor is running in start situation • A rotating PM-motor	Make sure that there is no rotating PM-motor when the start command is given.
34	Internal bus com- munication	Ambient interference or defec- tive hardware	Should the fault re-occur, contact the distributor near to you.
35	Application fault	Application is not working prop- erly	Contact the distributor near to you.
41	IGBT Overtem- perature	Overtemperature alarm is issued when the IGBT switch temperature exceeds 110 °C	Check loading. Check motor size. Make identification run.
50	Analogue input I _{in} < 4mA (selected signal range 4 to 20 mA)	Current at the analogue input is < 4mA • Control cable is broken or loose • Signal source has failed	Check the current loop cir- cuitry.
51	External fault	Digital input fault. Digital input has been programmed as exter- nal fault input and this input is active.	
53	Fieldbus fault	The data connection between the fieldbus Master and the fieldbus of the drive broken	Check installation. If installation is correct con- tact the nearest Honeywell distributor.
57	Identification fault	Identification run has failed	Run command was removed before comple- tion of identification run. Motor is not connected to inverter. There is load on motor shaft.

Table 6.1 : Fault codes

F08 SubCode	Fault			
60	Watchdog reset			
61	SW stack overflow			
62	HW stack overflow			
63	Misalignment			
64	4 Illegal op			
65 PLL lost lock / Low CPU voltage				
66 EEPROM Device				
67 EEPROM Queue full				
68 MPI communication (dead or CRC errors)				
70	CPU load			
71	External oscillator			
72	72 Fault in Power triggered by user			

Table 6.2: Fault subcodes from power

F08 SubCode	Fault			
82	Watchdog reset			
84	MPI CRC			
86	MPI2 CRC			
87	MPI2 message bFault subcodes from poweruffer overflow			
97	MPI off line error			
98	MPI driver error			
101	MODBUS out of buffer			
115 DeviceProperty data format tree too deep exceed 3				

Table 6.2: Fault subcodes from control API

7. SMARTVFD COMPACT APPLICATION INTERFACE

7.1 INTRODUCTION

There are three versions of Application Interfaces (API) available for the SmartVFD COMPACT drive:

API Full	API Limited	API RS-485 (Modbus RTU)	
6 Digital inputs	3 Digital inputs	1 Digital input	
2 Analogue inputs	1 Analogue input	1 Relay output	
1 Analogue output	1 Relay output	RS-485 Interface	
1 Digital output	RS-485 Interface		
2 Relay outputs			
RS-485 Interface			

Tableau 7.1 : Available Application Interfaces

This section provides you with a description of the I/O-signals for these versions and instructions for using the SmartVFD COMPACT general purpose application.

The frequency reference can be selected from the analogue inputs, fieldbus, preset speeds or keypad.

Basic properties:

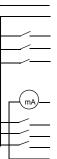
- Digital inputs DI1...DI6 are freely programmable. The user can assign a single input to many functions
- · Digital-, relay- and analogue outputs are freely programmable
- Analogue input 1 can be programmed as current or voltage input in API Limited version

Special features in all API versions:

- · Programmable Start/Stop and Reverse signal logic
- · Reference scaling
- · Programmable start and stop functions
- · DC-brake at start and stop
- Programmable U/f curve
- · Adjustable switching frequency
- · Autorestart function after fault

- Protections and supervisions (all fully programmable; off, warning, fault):
 - · Current signal input fault
 - · External fault
 - · Undervoltage fault
 - · Earth fault
 - · Motor thermal, stall and underload protection
 - · Fieldbus communication

Special features in API Full and API Limited:


- 8 preset speeds
- · Analogue input range selection, signal scaling and filtering
- · PI-controller

7.2 CONTROL I/O

Reference

Potentiometer:1~ 10K +/- 5% API FULL

Terminal		Signal	Factory preset	Description
1 +10Vre		Ref. voltage out		Maximum load 10 mA
	+I0vie	Rel. Voltage out		0 - +10 V Ri = 200 k Ω
2	Al1	Analog signal in 1	Freq. reference P)	$0 - +10 \text{ V RI} = 200 \text{ K} \Omega$ (min)
3	•ND	I/O signal ground		
6	24Vout	24V output for DI's		±20 %, max. load 50 mA
7	(●ND	I/O signal ground		
8	DI1	Digital input 1	Start forward P)	0 - +30 V Ri = 12 kΩ min
9	D12	Digital input 2	Start reverse P)	0 00 010 12 12 12 11
10	D13	Digital input 3	Preset speed B0 P)	
А	A	RS485 signal A	FB Communication	Positive
В	Б	RS485 signal B	FB Communication	Negative
4	Al2	Analog signal in 2	PI actual value P)	0(4) - 20 mA, Ri = 200 Ω
5	.ND	I/O signal ground		
13	.€ND	I/O signal ground		
14	DI4	Digital input 4	Preset speed B1 ^{P)}	
15	DI5	Digital input 5	Fault reset P)	0 - +30V Ri=12 kΩ min
16	DI6	Digital input 6	Disable PI contr. P)	
18	AO		Output frequency P)	0(4) - 20 mA, RL = 500 Ω
20	DO	Digital signal out	Active = READY P)	Open collector, max. load 48V/50mA
22	RO 13	Relay out 1		
	(NO)	Theidy out 1	Active = RUN P)	Max. switching load:
23	RQ <u>14</u> (NO)	J		250Vac/2A or 250Vdc/0.4A
24	RO 22	_		
	(NO)	Relay out 2		Max. switching load:
25	RO 21		Active = FAULT P)	250Vac/2A or 250Vdc/0.4A
26	RO 24			200100000
20	(NC)			

Table 7.2 : SmartVFD COMPACT General purpose application default I/O configuration and connections for API FULL version

P) = Programmable function, see parameter lists and descriptions, chapters 9 and 10.

•		API LIMITED					
	Terminal		Signal	Factory preset	Description		
	1	+10Vre	Ref. voltage out		Maximum load 10 mA		
	-2	-AI1	Analog signal in 1	Freq. reference ^{P)} Can be changed to 0(4)mA - 20mA cur- rent input with the dip switch (see 10.12.1)	0 - +10 V Ri = 200 kΩ		
	3	GND	I/(Osignal ground				
ļ	6	-24Vout	24V output for DI's		±20 %, max. load 50 mA		
	-7	GND	I/Cesignal ground				
	8	DI1	Digital input 1	Start forward P)	0 - +30 V Ri = 12 k Ω min		
	9	DI2	Digital input 2	Start reverse P)			
<u> </u>	10	-DI3	Digital input 3	Preset speed B0 P)			
<u> </u>	~	-A	RS485 signal A	FB Communication	Positive		
	В	В	RS485 signal B	FB Communication	Negative		
	24	RO 22 (NO)	Relay out 2	ACTIVE (Relay opened) = FAULT ^{P)}	Max. switching load: 250Vac/2A or 250Vdc/		
	25	RO 21		• •	0.4A		

Table 7.3 : SmartVFD COMPACT General purpose application default I/O configuration and connections for API LIMITED version

P) = Programmable function, parameter lists and descriptions, chapters 9 and 10.

	Terminal			Signal	Factory preset	Description
	3	GND	I/(signal ground			
	6	24Vout	24	/ output for DI's		±20 %, max. load 50 mA
	7	GND	1/(signal ground		
	8	DI1	Dig	ital input 1	1 = Start forward	0 - +30 V Ri = 12 k Ω min
<u> </u>	Α	A	RS	485 signal A	FB Communication	Positive
	В	В	RS	485 signal B	FB Communication	Negative
	24	RO 22 (NO)	Relay out 2		ACTIVE (Relay opened) = FAULT P)	Max. switching load: 250Vac/2A or 250Vdc/
	25	RO 21			openeu) = FAULT	0.4A

API RS-485

Tableau 7.4 : SmartVFD COMPACT General purpose application default I/O configuration and connections for API RS-485 version

P) = Programmable function, parameter lists and descriptions, chapters 9 and 10.

8. CONTROL PANEL

8.1 GENERAL

The SmartVFD COMPACT API Full and API Limited versions have similar control panels. The panel is integrated to the drive consisting of corresponding application card and an overlay on the drive cover with status display and button clarifications.

The Control panel consists of an LCD display with backlight and a keypad including a navigation wheel, a green START button and a red STOP button (see Figure 8.1).

8.2 DISPLAY

The display includes 14-segment and 7-segment blocks, arrowheads and clear text unit symbols. The arrowheads, when visible, indicate some information about the drive, which is printed in clear text on the overlay (numbers 1...14 in the figure below). The arrowheads are grouped in 3 groups with the following meanings and English overlay texts (see Figure 8.1):

Group 1 - 5; Drive status

- 1 = Drive is ready to start (READY)
- 2 = Drive is running (RUN)
- 3 = Drive has stopped (STOP)
- 4 = Alarm condition is active (ALARM)
- 5 = Drive has stopped due to a fault (FAULT)
- Group 6 10; Control selections
 - 6 = Motor is rotating forward (FWD)
 - 7 = Motor is rotating reverse (REV)
 - 8 = I/O terminal block is the selected control place (I/O)
 - 9 = Keypad is the selected control place (KEYPAD)
 - 10 = Fieldbus is the selected control place (BUS)
- Group 11 14; Navigation main menu
 - 11 = Reference main menu (REF)
 - 12 = Monitoring main menu (MON)
 - 13 = Parameter main menu (PAR)
 - 14 = Fault history main menu (FLT)

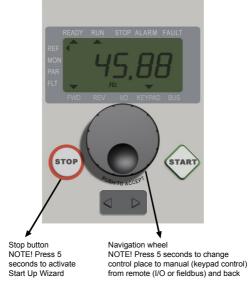


Figure 8.1: SmartVFD COMPACT Control panel

8.3 KEYPAD

The keypad section of the control panel consists of a navigation wheel and START and STOP buttons (see Figure 8.1). The navigation wheel is used for navigating on the panel display, but it also works as a reference potentiometer when KEYPAD has been selected as the control place of the drive. The wheel has two separate functions;

- rotating the wheel e.g. for changing parameter value (12 steps / round)
- pressing the wheel e.g. for accepting the new value.

The drive stops always, regardless of the selected control place, by pressing the keypad STOP button. The drive starts by pressing the keypad START button, but only if the selected control place is KEYPAD.

NOTE! You can quickly change the active control place from remote (I/O or fieldbus) to local (keypad) by pressing the navigation wheel for about 5 seconds!s

8.4 NAVIGATION ON THE SMARTVFD COMPACT CONTROL PANEL

This chapter provides you with information on navigating the menus on SmartVFD COMPACT and editing the values of the parameters.

8.4.1 Main menu

The menu structure of SmartVFD COMPACT control software consists of a main menu and several submenus. Navigation in the main menu is shown below:

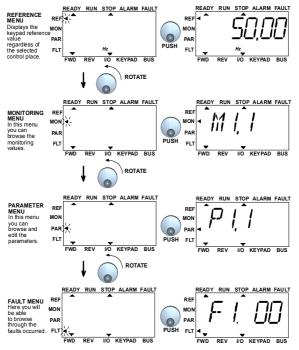


Figure 8.2: The main menu of SmartVFD COMPACT

8.4.2 Reference menu

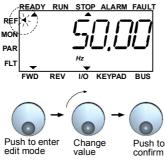


Figure 8.3: Reference menu display

Move to the reference menu with the navigation wheel (see Figure 8.2). The reference value can be changed with the navigation wheel as shown in Figure 8.3. The reference value follows the rotation continuously (= without separate new value acceptance).

8.4.3 Monitoring menu

Figure 8.4: Monitoring menu display

Monitoring values mean actual values of measured signals as well as statuses of some control settings. They are visible in API Full and Limited display, but they cannot be edited. The monitoring values are listed in Table 8.1.

Pushing the navigation wheel once in this menu takes the user to the next level, where the monitoring value, e.g. M1.11 and value are visible (see Figure 8.2). The monitoring values can be browsed by rolling the navigation wheel clockwise, as shown in Figure 8.4.

Code	Monitoring signal	Unit	ID	Description
M1.1	Output frequency	Hz	1	Frequency to the motor
M1.2	Frequency reference	Hz	25	
M1.3	Motor shaft speed	rpm	2	Calculated motor speed
M1.4	Motor current	A	3	Measured motor current
M1.5	Motor torque	%	4	Calculated actual/nominal torque of the motor
M1.6	Motor power	%	5	Calculated actual/nominal power of the motor
M1.7	Motor voltage	V	6	Motor voltage
M1.8	DC-link voltage	V	7	Measured DC-link voltage
M1.9	Unit temperature	°C	8	Heat sink temperature
M1.10	Motor temperature	%		Calculated motor temperature
M1.11	Analogue input 1	%	13	Al1 value
M1.12	Analogue input 2	%	14	Al2 value ONLY IN API FULL!
M1.13	Analogue output	%	26	AO1 ONLY IN API FULL!
M1.14	DI1, DI2, DI3		15	Digital input statuses
M1.15	DI4, DI5, DI6		16	Digital input statuses ONLY IN API FULL!
M1.16	RO1, (also RO2, DO in API FULL)		17	Relay/digital output statuses
M1.17	PI setpoint	%	20	In percent of the maximum process reference
M1.18	PI feedback	%	21	In percent of the maximum actual value
M1.19	PI error value	%	22	In percent of the maximum error value
M1.20	PI Output	%	23	In percent of the maximum output value

Table 8.1 : SmartVFD COMPACT monitoring signals

8.4.4 Parameter menu

In Parameter menu only the Quick setup parameter list is shown by default. By giving the right value 0 to the parameter 13.1 it is possible to open other advanced parameter groups. The parameter lists and descriptions can be found in chapters 9 and 10.

The following figure shows the parameter menu view:

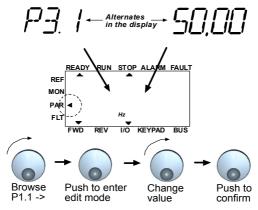
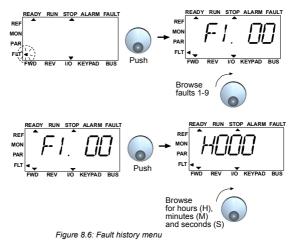



Figure 8.5: Parameter menu

In Fault history menu you can browse through 9 latest faults (see Figure 7.16). If a fault is active, the relevant fault number (e.g. F1 02) alternates in the display with main menu. When you browse between the faults, the fault codes of active faults are blinking. The active faults can be reset by pressing the STOP button for 1 time. If the fault cannot be reset, the blinking continues. It is possible to navigate in the menu structure also when there are active faults are here are not present, but the display returns automatically to the fault menu if buttons or navigation wheel are not pressed or navigation is not rotated. The operating date, hour and minute values at the fault instant are shown in the value menu (operating hours = displayed reading).

Note! The whole fault history can be cleared by pressing STOP button for 5 sec time when the drive is stopped and Fault history menu is selected in the display..

See Chapter 6 in for fault descriptions.

9. GENERAL PURPOSE APPLICATION PARAMETERS

On the next pages you can find the lists of parameters within the respective parameter groups. The parameter descriptions are given in Chapter 10.

NOTE: Parameters can only be changed when drive is in stop mode!

Explanations:	
Code:	Location indication on the keypad; Shows the operator the present Monitoring value number or Parameter number
Parameter:	Name of monitoring value or parameter
Min:	Minimum value of parameter
Max:	Maximum value of parameter
Unit:	Unit of parameter value; given if available
Default:	Factory preset value
ID:	ID number of the parameter (used with fieldbus control)
IE	More information on this parameter available in chapter 10: 'Parameter descriptions' click on the parameter name.

9.1 QUICK SETUP PARAMETERS (VIRTUAL MENU, SHOWS WHEN PAR.13.1 = 1)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P1.1	Motor nominal voltage	180	690	V	230 400 600	110	Check rating plate on the motor
	P1.2	Motor nominal frequency	30	320	Hz	50,00	111	Check rating plate on the motor
	P1.3	Motor nominal speed	300	20000	rpm	1440	112	Default applies for a 4- pole motor.
	P1.4	Motor nominal current	0,2 x I _{Nunit}	2,0 x I _{Nunit}	А	I _{Nunit}	113	Check rating plate on the motor
	P1.5	Motor $\cos\phi$	0,30	1,00		0,85	120	Check rating plate on the motor
IF.	P1.7	Current limit	0,2 x I _{Nunit}	2 x I _{Nunit}	А	1,5 x I _{Nunit}	107	
	P1.15	Torque boost	0	1		0	109	0 = Not used 1 = Used
	P2.1	Remote control place	1	2		1	172	1 = I/O terminal 2 = Fieldbus
I E	P2.2	Start function	0	1		0	505	0 = Ramp1 = Flying start
	P2.3	Stop function	0	1		0	506	0 = Coasting 1 = Ramp
	P3.1	Min frequency	0,00	P3.2	Hz	0,00	101	
	P3.2	Max frequency	P3.1	320	Hz	50,00	102	
ı f	P3.3	I/O reference	0	4		3	117	0 = Preset Speeds (0-7) 1 = Keypad Reference 2 = Fieldbus Reference 3 = Al1 (API FULL & LIMITED) 4 = Al2 (API FULL)
IF.	P3.4	Preset speed 0	0,00	P3.2	Hz	5,00	124	Activated by digital inputs
	P3.5	Preset speed 1	0,00	P3.2	Hz	10,00	105	Activated by digital inputs
IF.	P3.6	Preset speed 2	0,00	P3.2	Hz	15,00	106	Activated by digital inputs
	P3.7	Preset speed 3	0,00	P3.2	Hz	20,00	126	Activated by digital inputs

Table 9.1: Quick setup parameters

Code	Parameter	Min	Max	Unit	Default	ID	Note
P4.2	Acceleration time	0,1	3000	s	1,0	103	Acceleration time from 0 Hz to maximum fre- quency
P4.3	Deceleration time	0,1	3000	s	1,0	104	Deceleration time from maximum frequency to 0 Hz.
P6.1	Al1 Signal range	0	3		0	379	API FULL and LIM- ITED: 0 = Voltage 010 V 1 = Voltage 210 V API LIMITED ONLY: 2 = Current 020 mA 3 = Current 420 mA NOTE: When using API LIMITED, select the voltage/current range also with the dip switch
P6.5	Al2 Signal range (API Full only)	2	3		3	390	2 = Current 020 mA 3 = Current 420 mA
P10.4	Fault autoreset	0	1		0	731	0 = Not used 1 = Used
P13.1	Parameter conceal	0	1		1	115	 0 = All parameters visible 1 = Only quick setup parameter group visible

Table 9.1: Quick setup parameters

9.2 MOTOR SETTINGS (CONTROL PANEL: MENU PAR -> P1)

Code	Parameter	Min	Max	Unit	Default	ID	Note
P1.1	Motor nominal voltage	180	690	V	230 400 600	110	Check rating plate on the motor
P1.2	Motor nominal frequency	30	320	Hz	50,00	111	Check rating plate on the motor
P1.3	Motor nominal speed	300	20000	rpm	1440	112	Default applies for a 4- pole motor.
P1.4	Motor nominal current	0,2 x I _{Nunit}	2,0 x I _{Nunit}	А	I _{Nunit}	113	Check rating plate on the motor
P1.5	Motor $\cos\phi$	0,30	1,00		0,85	120	Check rating plate on the motor
P1.7	Current limit	0,2 x I _{Nunit}	2 x I _{Nunit}	A	1,5 x I _{Nunit}	107	

Table 9.2: Motor settings

Parameters

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P1.8	Motor control mode	0	1		0	600	0 = Frequency control 1 = Speed control
	P1.9	U/f ratio selec- tion	0	2		0	108	0 = Linear 1 = Squared 2 = Programmable
	P1.10	Field weakening point	30,00	320	Hz	50,00	602	
IF.	P1.11	Voltage at field weakening point	10,00	200	%	100,00	603	% of Nominal voltage of the motor
	P1.12	U/f curve mid- point frequency	0,00	P1.10	Hz	50,00	604	
IF.	P1.13	U/f curve mid- point voltage	0,00	P1.11	%	100,00	605	% of Nominal voltage of the motor
ıF	P1.14	Output voltage at zero fre- quency	0,00	40,00	%	0,00	606	% of Nominal voltage of the motor
	P1.15	Torque boost	0	1		0	109	0 = Not used 1 = Used
	P1.16	Switching fre- quency	1,5	16,0	kHz	6,0	601	
ı Ør	P1.17	Brake chopper	0	2		0	504	0=Disabled 1=Used in Run state 2=Used in Run and Stop state
			0	nly in Al	PI FULL	& LIMITE	Ð	
IF.	P1.18	Motor identifica- tion	0	1		0	631	1=Identification without run after start command

Table 9.2: Motor settings

NOTE! These parameters are shown, when P13.1 = 0.

9.3 START/STOP SETUP (CONTROL PANEL: MENU PAR -> P2)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
ı Æ-	P2.1	Remote control place	1	2		1	172	1 = I/O terminal 2 = Fieldbus (keypad control is activated with par. 2.5)
	P2.2	Start function	0	1		0	505	0 = Ramp 1 = Flying start
	P2.3	Stop function	0	1		0	506	0 = Coasting 1 = Ramp
IE	P2.4	Start/Stop logic	0	3		0	300	1 (Start signal) 2 (Default D1)) (Default D12) 0 Start Fwd Start Pulse Start Pulse Start Pulse Start Pulse Start Rv REAF
	P2.5	Local/remote	0	1			211	0 = Remote 1 = Keypad

Table 9.3: Start/stop setup

9.4 FREQUENCY REFERENCES (CONTROL PANEL: MENU PAR -> P3)

Code	Parameter	Min	Max	Unit	Default	ID	Note
P3.1	Min frequency	0,00	P3.2	Hz	0,00	101	
P3.2	Max frequency	P3.1	320	Hz	50,00	102	
P3.3	I/O reference	0	4		3	117	 0 = Preset Speeds (0-7) 1 = Keypad Reference 2 = Fieldbus Reference
							3 = Al1 (API FULL & LIMITED) 4 = Al2 (API FULL)
P3.4	Preset speed 0	0,00	P3.2	Hz	5,00	124	Activated by digital inputs
P3.5	Preset speed 1	0,00	P3.2	Hz	10,00	105	Activated by digital inputs
P3.6	Preset speed 2	0,00	P3.2	Hz	15,00	106	Activated by digital inputs
P3.7	Preset speed 3	0,00	P3.2	Hz	20,00	126	Activated by digital inputs
P3.8	Preset speed 4	0,00	P3.2	Hz	25,00	127	Activated by digital inputs
P3.9	Preset speed 5	0,00	P3.2	Hz	30,00	128	Activated by digital inputs
P3.10	Preset speed 6	0,00	P3.2	Hz	40,00	129	Activated by digital inputs
P3.11	Preset speed 7	0,00	P3.2	Hz	50,00	130	Activated by digital inputs

Table 9.4: Frequency references

NOTE! These parameters are shown, when P13.1 = 0.

9.5 RAMPS AND BRAKES SETUP (CONTROL PANEL: MENU PAR -> P4)

	Code	Parameter	Min	Мах	Unit	Default	ID	Note
	P4.1	Ramp shape	0,0	10,0	s	0,0	500	0 = Linear >0 = S-curve ramp time
	P4.2	Acceleration time	0,1	3000	s	1,0	103	
	P4.3	Deceleration time	0,1	3000	s	1,0	104	
	P4.4	DC braking cur- rent	0.2 x I _{Nunit}	2 x I _{Nunit}	А	Varies	507	
	P4.5	DC braking time at start	0,00	600.00	s	0	516	0 = DC brake is off at start
	P4.6	Frequency to start DC braking during ramp stop	0,10	10,00	Hz	1,50	515	
IF.	P4.7	DC braking time at stop	0,00	600.00	s	0	508	<pre>0 = DC brake is off at stop</pre>
	P4.8	Flux brake	0	1			520	0 = Off 1 = On
	P4.9	Flux braking current	0	7,4	А		519	
	P4.10	Ramp shape 2	0,0	10,0	s	0,0	501	0 = Linear >0 = S-curve ramp time
	P4.11	Acceleration time 2	0,1	3000	s	1,0	502	
	P4.12	Deceleration time 2	0,1	3000	s	1,0	503	

Table 9.5: Motor control parameters

9.6 DIGITAL INPUTS (CONTROL PANEL: MENU PAR -> P5)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
I.F.	P5.1	Start signal 1	0	6		1	403	0 = Not used 1 = DI1 2 = DI2 Only in API FULL & LIMITED 3 = DI3
			-	-				4 = DI4 Only in API FULL 5 = DI5 6 = DI6
	P5.2	Start signal 2	0	6		2	404	As parameter 5.1
	P5.3	Reverse	0	6		0	412	As parameter 5.1
	P5.4	Ext. fault Close	0	6		0	405	As parameter 5.1
	P5.5	Ext. fault Open	0	6		0	406	As parameter 5.1
	P5.6	Fault reset	0	6		5	414	As parameter 5.1
	P5.7	Run enable	0	6		0	407	As parameter 5.1
	P5.8	Preset speed B0	0	6		3	419	As parameter 5.1
	P5.9	Preset speed B1	0	6		4	420	As parameter 5.1
	P5.10	Preset speed B2	0	6		0	421	As parameter 5.1
	P5.11	Disable PI	0	6		6	1020	As parameter 5.1
ı£	P5.12	Force to I/O	0	1(FULL & LIM- ITED 6(RS4 85)		0	409	As parameter 5.1
	P5.13	Ramp time select	0	6		0	408	As parameter 5.1

Table 9.6: Digital inputs

9.7 ANALOGUE INPUTS (CONTROL PANEL: MENU PAR -> P6)

Code	Parameter	Min	Мах	Unit	Default	ID	Note
		0	nly in Al	PI FULL	& LIMITE	D	
P6.1	Al1 Signal range	0	3		0	379	API FULL and LIM- ITED: 0 = Voltage 010 V 1 = Voltage 210 V API LIMITED ONLY: 2 = Current 420 mA 3 = Current 420 mA NOTE: When using API LIMITED, select the voltage/current range also with the dip switch
P6.2	AI1 filter time	0,0	10,0	S	0,1	378	0 = no filtering
P6.3	AI1 Custom min	-100,0	100,0	%	0,0	380	0,0 = no min scaling
P6.4	Al1 Custom max	-100,0	100,0	%	100,0	381	100,0 = no max scaling
			Only	/ in API	FULL		
P6.5	AI2 signal range	2	3		3	390	2 = Current 020 mA 3 = Current 420 mA
P6.6	AI2 filter time	0,0	10,0	S	0,1	389	0 = no filtering
P6.7	Al2 Custom min	-100,0	100,0	%	0,0	391	0,0 = no min scaling
P6.8	Al2 Custom max	-100,0	100,0	%	100,0	392	100,0 = no max scaling

Table 9.7: Analoque inputs

9.8 DIGITAL AND ANALOGUE OUTPUTS(CONTROL PANEL: MENU PAR->P7)

	Code	Parameter	Min	Max	Unit	Default	ID	Selections
				On	ly in A	PI FULL		
ı.	P7.1	Relay output 1 content	0	11		2	313	0 = Not used 1 = Ready 2 = Run 3 = Fault 4 = Fault Inverted 5 = Alarm 6 = Reversed 7 = At Speed 8 = Motor Regulator Active 9 = FBControlWord.B14 10 = FBControlWord.B14 11 = FBControlWord.B15
				In a	II API y	versions		
	P7.2	Relay output 2 content	0	11		3	314	As parameter 7.1
				On	ly in A	PI FULL		
	P7.3	Digital output 1 content	0	11		1	312	As parameter 7.1
ı£-	P7.4	Analogue output function	0	4		1	307	0 = Not in use 1 = Output freq. (0-f _{max}) 2 = Output current (0-I _{nMo-} tor ⁾ 3 = Torque (0-Nominal torque) 4 = PI controller output
	P7.5	Analogue output minimum	0	1		1	310	0 = 0 mA 1 = 4 mA
				-	/ in AP	I Limited		
	P7.6	Relay 2 invert	0	1		0	489	1= Relay 2 inverted

Table 9.8: Digital and analogue outputs

9.9 PROTECTIONS (CONTROL PANEL: MENU PAR -> P9)

	Code	Parameter	Min	Мах	Unit	Default	ID	Note
	P9.1	Response to 4mA reference fault	1	2		1	700	0 = No response 1 = Alarm 2 = Fault, stop acc. to P2.3
	P9.2	Response to undervoltage fault	1	2		2	727	1 = Alarm 2 = Fault, stop acc. to P2.3
	P9.3	Earth fault pro- tection	1	2		2	703	1 = Alarm 2 = Fault, stop acc. to P2.3
	P9.4	Stall protection	1	2		1	709	0 = No response 1 = Alarm 2 = Fault, stop acc. to P2.3
	P9.5	Underload pro- tection	1	2		1	713	0 = No response 1 = Alarm 2 = Fault, stop acc. to P2.3
	P9.7	Thermal protec- tion of the motor	1	2		2	704	0 = No response 1 = Alarm 2 = Fault, stop acc. to P2.3
	P9.8	Motor ambient temperature	-20	100	°C	40	705	
ıF	P9.9	Motor cooling factor at zero speed	0,0	150,0	%	40,0	706	
	P9.10	Motor thermal time constant	1	200	min	45	707	
	P9.11	Motor Phase Supervision	0	2	unit	2	702	Description

Table 9.9: Protections

NOTE! These parameters are shown, when P13.1 = 0.

9.10 AUTORESTART PARAMETERS (CONTROL PANEL: MENU PAR -> P10)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P10.1	Wait time	0,10	10,00	s	0,50	717	Delay before automatic restart after a fault has disappeared
IF	P10.2	Trial time	0,00	90,00 (FULL & LIMITED) 60,00 (RS485)	s	30,00	718	Defines the time before the frequency converter tries to automatically restart the motor after the fault has disappeared
	P10.3	Start function	0	2		0	719	0 = Ramp 1 = Flying start 2 = According to P4.2 Affects only to start after autoreset!
	P10.4	Fault autoreset	0	1		0	731	0 = Disabled 1 = Enabled

Table 9.10: Fault autoreset parameters

NOTE! These parameters are shown, when P13.1 = 0.

9.11 PI CONTROL PARAMETERS (CONTROL PANEL: MENU PAR -> P12)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
IF.	P12.1	PI activation	0	2		0	163	0 = Not used 1 = PI for motor control 2 = PI for external use (Only in API FULL)
	P12.2	PI controller gain	0,0	1000	%	100,0	118	
	P12.3	PI controller I- time	0,00	320,0	s	10,00	119	
	P12.4	Keypad PI refer- ence	0,0	100,0	%	0,0	167	
	P12.5	O the sint service	0	3		0	332	0 = Keypad PI reference, P12.4 1 = Fieldbus
	r 12.5	Setpoint source	U	3		0		2 = Al1 Only in API FULL & LIMITED
								3 = Al2 Only in API FULL

Table 9.11: PI control parameters

Code	Parameter	Min	Мах	Unit	Default	ID	Note
P12.6	Feedback source	0	2		2	334	0= Fieldbus 1 = Al1 Only in API FULL & LIMITED 2 = Al2 Only in API FULL
P12.7	Feedback mini- mum	0,0	100,0	%	0,0	336	0 = No minimum scaling
P12.8	Feedback maxi- mum	0,0	100,0	%	100,0	337	100,0 = No maximum scal- ing
P12.9	Error value inver- sion	0	1		0	340	0=No inversion (Feed- back <setpoint->Increase PI Output) 1=Inverted (Feedback<set- point->Decrease PI Output)</set- </setpoint->

Table 9.11: PI control parameters

NOTE! These parameters are shown, when P13.1 = 0

9.12 EASY USAGE MENU (CONTROL PANEL: MENU PAR -> P0)

	Code	Parameter	Min	Max	Unit	Default	ID	Note
	P13.1	Parameter conceal	0	1		1	115	 0 = All parameters visible 1 = Only quick setup parameter group visible
IF	P13.2	Drive setup	0	з		0	540	0 = Basic 1 = Pump drive 2 = Fan drive 3 = Conveyor drive (HP) NOTE! Visible only duriing Startup wizard

Table 9.12: Easy usage menu parameters

9.13 SYSTEM PARAMETERS

Code	Parameter	Min	Max	Default	ID	Note
	Sof	tware i	nform	ation (ME	NU PA	.R -> S1)
S1.1	API system SW				2314	
S1.2	API system SW version				835	
S1.3	Power SW ID				2315	
S1.4	Power SW version				834	
S1.5	Application SW ID				837	
S1.6	Application SW revision				838	
S1.7	System load				839	
	IF	RS48	5 info	rmation	(MENU	J PAR -> S2)
S2.1	Communication status				808	Format: xx.yyy xx = 0-64 (Number of error mes- sages) yyy = 0 - 999 (Number of correct messages)
S2.2	Fieldbus protocol	0	1	0	809	0 = FB disabled 1= Modbus
S2.3	Slave address	1	255	1	810	
S2.4	Baud rate	0	5	5	811	0 =300, 1 =600, 2 =1200, 3 =2400, 4 =4800, 5 =9600,
S2.5	Number of stop bits	0	1	1	812	0 =1, 1 =2
S2.6	Parity type	0	0	0	813	0= None (locked)
S2.7	Communication time-out	0	255	0	814	0= Not used, 1= 1 second, 2= 2 seconds, etc.
S2.8	Reset communica- tion status	0	1	0	815	1= Resets par. S2.1
	1	fotal c	ounte	rs (MENU	J PAR	-> S3)
S3.1	MWh counter				827	
S3.2	Power on days				828	
S3.3	Power on hours				829	
		User s	setting	s (MENU	PAR ->	• S4)
S4.1	Display contrast	0	15	15	830	Adjusts the display contrast
S4.2	Default page	0	20	0	2318	Defines which monitoring page (1.11.20) is shown after startup. 0 = Not used
S4.3	Restore factory defaults	0	1	0	831	1= Restores factory defaults for all parameters

Table 9.13: System parameters

NOTE! These parameters are shown, when P13.1 = 0.

10. PARAMETER DESCRIPTIONS

On the next pages you can find the descriptions of certain parameters. The descriptions have been arranged according to parameter group and number.

10.1MOTOR SETTINGS (CONTROL PANEL: MENU PAR -> P1)

1.7 CURRENT LIMIT

This parameter determines the maximum motor current from the frequency converter. To avoid motor overload, set this parameter according to the rated current of the motor. The current limit is equal to the rated converter current (I_0) by default.

1.8 MOTOR CONTROL MODE

With this parameter the user can select the motor control mode. The selections are:

0 = Frequency control:

Drive frequency reference is set to output frequency without slip compensation. Motor actual speed is finally defined by motor load.

1 = Speed control:

Drive frequency reference is set to motor speed reference. The motor speed remains the same regardless of motor load. Slip is compensated.

1.9 U/F RATIO SELECTION

There are three selections for this parameter:

0 = Linear:

The voltage of the motor changes linearly with the frequency in the constant flux area from 0 Hz to the field weakening point where the nominal voltage is supplied to the motor. Linear U/f ratio should be used in constant torque applications. See Figure 10.1.

This default setting should be used if there is no special need for another setting.

1 = Squared:

The voltage of the motor changes following a squared curve form with the frequency in the area from 0 Hz to the field weakening point where the nominal voltage is also supplied to the motor. The motor runs under magnetised below the field weakening point and produces less torque, power losses and electromechanigal noise. Squared Ulf ratio can be used in applications where torque demand of the load is proportional to the square of the speed, e.g in centrifugal fans and pumps.

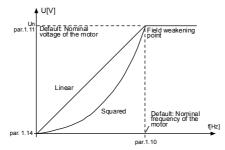


Figure 10.1: Linear and squared change of motor voltage

2 = Programmable U/f curve:

The U/f curve can be programmed with three different points. Programmable U/f curve can be used if the other settings do not satisfy the needs of the application.

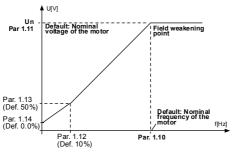


Figure 10.2: Programmable U/f curve

1.10 FIELD WEAKENING POINT

The field weakening point is the output frequency at which the output voltage reaches the value set with par. 1.11.

1.11 VOLTAGE AT FIELD WEAKENING POINT

Above the frequency at the field weakening point, the output voltage remains at the value set with this parameter. Below the frequency at the field weakening point, the output voltage depends on the setting of the U/f curve parameters. See parameters 1.9 - 1.14 and Figures 10.1 and 10.2.

When the parameters 1.1 and 1.2 (nominal voltage and nominal frequency of the motor) are set, the parameters 1.10 and 1.11 are automatically given the corresponding values. If you need different values for the field weakening point and the voltage, change these parameters after setting the parameters 1.1 and 1.2.

1.12 U/F CURVE, MIDDLE POINT FREQUENCY

If the programmable U/f curve has been selected with the parameter 1.9, this parameter defines the middle point frequency of the curve. See Figure 10.2.

1.13 U/F CURVE, MIDDLE POINT VOLTAGE

If the programmable U/f curve has been selected with the parameter 1.9, this parameter defines the middle point voltage of the curve. See Figure 10.2.

1.14 OUTPUT VOLTAGE AT ZERO FREQUENCY

This parameter defines the zero frequency voltage of the curve. See Figures 10.1 and 10.2.

1.15 TORQUE BOOST

The voltage to the motor changes automatically with high load torque which makes the motor produce sufficient torque to start and run at low frequencies. The voltage increase depends on the motor type and power. Automatic torque boost can be used in applications with high load torque, e.g. in conveyors.

- 0 = Disabled
- 1 = Enabled

Note: In high torque - low speed applications - it is likely that the motor will overheat. If the motor has to run a prolonged time under these conditions, special attention must be paid to cooling the motor. Use external cooling for the motor if the temperature tends to rise too high.

Note: The best performance can be reached by running motor identification, see par. 1.18.

1.16 SWITCHING FREQUENCY

Motor noise can be minimised using a high switching frequency. Increasing the switching frequency reduces the capacity of the frequency converter unit. Switching frequency for SmartVFD COMPACT: 1.5...16 kHz.

1.17 BRAKE CHOPPER

Note! An internal brake chopper is installed in three phase supply MI2 and MI3 size drives

- 0 = No brake chopper used
- 1 = Brake chopper used in Run state
- 2 = Used in Run and Stop state

When the frequency converter is decelerating the motor, the energy stored to the inertia of the motor and the load are fed into an external brake resistor, if the brake chopper has been activated. This enables the frequency converter to decelerate the load with a torque equal to that of acceleration (provided that the correct brake resistor has been selected). See separate Brake resistor installation manual.

1.18 MOTORT IDENTIFICATION

0 = No action

1 = ID no run

When ID no run is selected, the drive will perform an ID-run when it is started from selected control place. Drive has to be started within 20 seconds, otherwise identification is aborted.

The drive does not rotate the motor during ID no run. When ID run is ready the drive is stopped. Drive will start normally, when the next start command is given.

The ID run improves the torque calculations and the automatic torque boost function. It will also result in a better slip compensation in speed control (more accurate RPM).

10.2 START/STOP SETUP (CONTROL PANEL: MENU PAR -> P2)

2.1 REMOTE CONTROL PLACE

With this parameter, the user can select the active control place. The selections are:

1 = I/O terminal (frequency reference can be selected with P3.3)

2 = Fieldbus

The priority order of selecting the control place is

- 1. Navigation wheel
- 2. Forced from I/O terminal
- 3. Par. 2.1

Note: Local/Remote control mode can be toggled by pressing the navigation wheel for 5 seconds. P2.1 will have no effect in local mode.

Local = Keypad is the control place

Remote = P2.1 defines the control place

2.2 START FUNCTION

The user can select two start functions for SmartVFD COMPACT with this parameter:

0 = Ramp start

The frequency converter starts from 0 Hz and accelerates to the set frequency reference within the set acceleration time (See detailed description: ID103). (Load inertia, torque or starting friction may cause

prolonged acceleration times).

1 = Flying start

With this function the drive identifies the speed of the motor and starts to the corresponding frequency immediately.

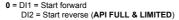
Use this mode if the motor is rotating when the start command is given. With the flying start, it is possible to ride through short mains voltage interruptions.

2.3 STOP FUNCTION

Two stop functions can be selected in this application:

0 = Coasting

The motor coasts to a halt without control from the frequency converter after the Stop command.


1 = Ramp stop

After the Stop command, the speed of the motor is decelerated according to the set deceleration parameters.

If the regenerated energy is high it may be necessary to use an external braking resistor for to be able to decelerate the motor in acceptable time.

2.4 START/STOP LOGIC

With this parameter the user can select the start/stop logic.

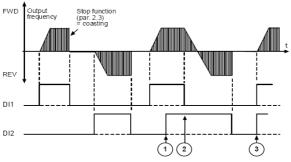
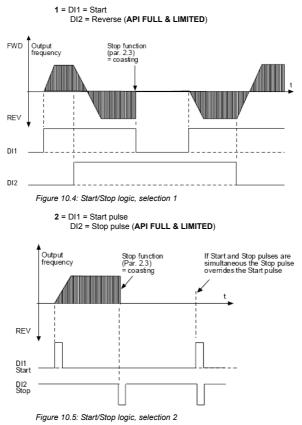



Figure 10.3: Start/Stop logic, selection 0

- 1 The first selected direction has the highest priority.
- 2 When the DIN1 contact opens the direction of rotation starts the change.
- 3 If Start forward (DI1) and Start reverse (DI2) signals are active simultaneously the Start forward signal (DI1) has priority.

3 = DI1 = Start forward, rising edge after fault

DI2 = Start reverse, rising edge after fault (API FULL & LIMITED)

2.5 LOCAL/REMOTE

This parameter defines whether the control place of the drive is remote (I/O or FieldBus) or Keypad. Keypad can also be selected as control place by pressing the navigation wheel for 5 seconds.

The priority order of selecting control place is

- 1. Navigation wheel
- 2. Forced from I/O
- 3. Parameter 2.1

10.3 FREQUENCY REFERENCES (CONTROL PANEL: MENU PAR -> P3)

3.3 I/O REFERENCE

Defines the selected frequency reference source when the drive is controlled from the I/O terminal.

0 = Preset speed 0 - 7

1 = Keypad reference

2 = Reference from Fieldbus (FBSpeedReference)

API FULL & LIMITED:

3 = Al1 reference (terminals 2 and 3, e.g. potentiometer)

API FULL:

4 = AI2 reference (terminal 4 and 5, e.g. transducer)

3.4 - 3.11 PRESET SPEEDS 0 - 7

These parameters can be used to determine frequency references that are applied when appropriate combinations of digital inputs are activated. Preset speeds can be activated from digital inputs despite of the active control place.

Parameter values are automatically limited between the minimum and maximum frequencies. (par. 3.1, 3.2).

Speed	Preset speed B2	Preset speed B1	Preset speed B0
If P3.3 = 0, Preset speed 0			
Preset speed 1			х
Preset speed 2		х	
Preset speed 3		х	х
Preset speed 4	x		
Preset speed 5	х		х
Preset speed 6	x	х	
Preset speed 7	х	х	х

Table 10.1: Preset speeds 1 - 7

10.4 RAMPS & BRAKES SETUP (CONTROL PANEL: MENU PAR -> P4)

4.1 RAMP SHAPE

4.10 RAMP SHAPE 2

The start and end of the acceleration and deceleration ramp can be smoothed with this parameter. Setting value 0 gives a linear ramp shape which causes acceleration and deceleration to act immediately to the changes in the reference signal.

Setting value 0.1...10 seconds for this parameter produces an S-shaped acceleration/deceleration. The acceleration and deceleration times are determined with parameters 4.2 and 4.3.

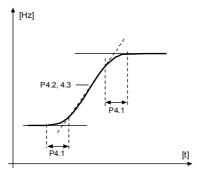


Figure 10.6: S-shaped acceleration/deceleration

- 4.2 ACCELERATION TIME
- 4.3 DECELERATION TIME
- 4.11 ACCELERATION TIME 2
- 4.12 DECELERATION TIME 2

These limits correspond to the time required for the output frequency to accelerate from the zero frequency to the set maximum frequency, or to decelerate from the set maximum frequency to zero frequency.

The user can set two different acceleration/deceleration time sets for one application. The active set can be selected with the selected digital input (par. 5.13).

4.5 DC BRAKING TIME AT START

DC-brake is activated when the start command is given. This parameter defines the time before the brake is released. After the brake is released, the output frequency increases according to the set start function by par. 2.2.

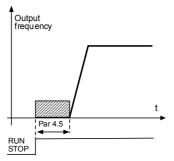


Figure 10.7: DC braking time at start

4.6 FREQUENCY TO START DC BRAKING DURING RAMP STOP

The output frequency at which the DC-braking is applied. See Figure 10.9.

4.7 DC BRAKING TIME AT STOP

Determines if braking is ON or OFF and the braking time of the DC-brake when the motor is stopping. The function of the DC-brake depends on the stop function, par. 2.3.

0 = DC brake is not in use

>0 = DC brake is in use and its function depends on the Stop function,

(par. 2.3). The DC braking time is determined with this parameter.

Par. 2.3 = 0 (Stop function = Coasting):

After the stop command, the motor coasts to a stop without control from the frequency converter.

With the DC injection, the motor can be electrically stopped in the shortest possible time, without using an optional external braking resistor.

The braking time is scaled by the frequency when the DC-braking starts. If the

frequency is greater, or equal to the nominal frequency of the motor, the set value of parameter 4.7 determines the braking time. For example, when the frequency is 10% of the nominal, the braking time is 10% of the set value of parameter 4.7.

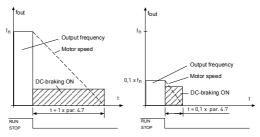


Figure 10.8: DC-braking time when Stop mode = Coasting

Par. 2.3 = 1 (Stop function = Ramp):

After the Stop command, the speed of the motor is reduced according to the set deceleration parameters, if the inertia of of the motor and load allows that, to the speed defined with parameter 4.6, where the DC-braking starts.

The braking time is defined with parameter 4.7. See Figure 10.9.

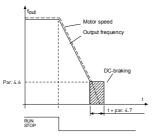


Figure 10.9: DC-braking time when Stop mode = Ramp

4.8 FLUX BRAKE

Instead of DC braking, flux braking is a useful form of braking with motors of max. 15kW.

When braking is needed, the frequency is reduced and the flux in the motor is increased, which in turn increases the motor's capability to brake. Unlike DC braking, the motor speed remains controlled during braking.

Activation mode	Description
0 = Off	Not used
1 = On	Normal mode. Activates flux bracking during deceleration regardless of load.
2 = Chopper	Emulates the behavior of a braking chopper by activating flux bracking based on DC-link voltage. Minimizes the heat- ing up of the motor in applications with frequent speed changes.
3 = Full mode	Activates flux bracking both during deceleration and on gen- erative shock loads at constant speed. Offers the highest performance in demanding applications.

Note: Flux braking converts the energy into heat at the motor, and should be used intermittently to avoid motor damage.

10.5 DIGITAL INPUTS (CONTROL PANEL: MENU PAR -> P5)

The selections for these parameters are:

- 0 = Not used
- 1 = DI1
- 2 = DI2 (API FULL & LIMITED)
- 3 = DI3 (API FULL & LIMITED)
- 4 = DI4 (API FULL)
- 5 = DI5 (API FULL)
- 6 = DI6 (API FULL)
- 5.1 START SIGNAL 1
- 5.2 START SIGNAL 2
- 5.3 REVERSE
- 5.4 EXTERNAL FAULT (CLOSE)
- 5.5 EXTERNAL FAULT (OPEN)
- 5.6 FAULT RESET
- 5.7 RUN ENABLE
- 5.8 PRESET SPEED B0
- 5.9 PRESET SPEED B1
- 5.10 PRESET SPEED B2
- 5.11 DISABLE PI

5.12 FORCE TO I/0

The control place is forced to I/O by activating the digital input that this function is programmed to.

The priority order of selecting control place is

- 1. Navigation wheel
- 2. Forced from I/O
- 3. Parameter 2.1

5.13 RAMP TIME SELECTION

Contact open: Acceleration/Deceleration time 1 selected Contact closed: Acceleration/Deceleration time 2 selected

Set Acceleration/Deceleration times with parameters 4.2 and 4.3 and the alternative ramp times with 4.11 and 4.12.

10.6 ANALOQUE INPUTS (CONTROL PANEL: MENU PAR -> P6)

6.2 AI1 SIGNAL FILTER TIME (ONLY IN API FULL & LIMITED)

6.6 AI2 SIGNAL FILTER TIME (ONLY IN API FULL)

This parameter, given a value greater than 0, activates the function that filters out disturbances from the incoming analogue signal.

Long filtering time makes the regulation response slower. See Figure 10.10.

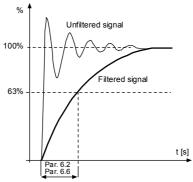


Figure 10.10: Al1 and Al2 signal filtering

- 6.3 AI1 CUSTOM SETTING MINIMUM
- 6.4 AI1 CUSTOM SETTING MAXIMUM
- 6.7 AI2 CUSTOM SETTING MINIMUM
- 6.8 AI2 CUSTOM SETTING MAXIMUM

These parameters set the analogue input signal for any input signal span from -100 to 100%.

10.7 DIGITAL AND ANALOQUE OUTPUTS (CONTROL PANEL: MENU PAR -> P7)

- 7.1 RELAY OUTPUT 1 FUNCTION
- 7.2 RELAY OUTPUT 2 FUNCTION (ONLY IN API FULL)
- 7.3 DIGITAL OUTPUT 1 FUNCTION (ONLY IN API FULL)

Setting	Signal content
0 = Not used	Not in operation
1 = Ready	The frequency converter is ready to operate
2 = Run	The frequency converter operates (motor is running, or DC-braking)
3 = Fault	A fault trip has occurred
4 = Fault inverted	A fault trip has not occurred
5 = Alarm	An alarm has occurred
6 = Reversed	The reverse command has been selected, output frequency to the motor is negative.
7 = At speed	The output frequency has reached the set reference
8 = Motor regulator activated	One of the limit regulators (e.g. current limit, volt- age limit) is activated
9 = FBControlWord.B13	Modbus control word bit 13
10 = FBControlWord.B14	Modbus control word bit 14
11 = FBControlWord.B15	Modbus control word bit 15

Table 10.2: Output signals via RO1, RO2 and DO1

7.4 ANALOGUE OUTPUT FUNCTION

- 0 = Full scale
- 1 = 0 Max. frequency
- 2 = 0 Nominal current
- 3 = 0 Nominal torque
- 4 = PID controller output, 0-100%

7.5 ANALOGUE OUTPUT MINIMUM

- 0 = 0-20 mA, 0-10V
- 1 = 4-20 mA, 2-10V

10.8 MOTOR THERMAL PROTECTION (PARAMETERS 9.7 - 9.10)

The motor thermal protection is to protect the motor from overheating. The Honeywell drive is capable of supplying higher than nominal current to the motor. If the load requires this high current there is a risk that the motor will be thermally overloaded. This is the case especially at low frequencies. At low frequencies the cooling effect of the motor is reduced as well as its capacity. If the motor is equipped with an external fan the load reduction at low speeds is small.

The motor thermal protection is based on a calculated model and it uses the output current of the drive to determine the load on the motor.

The motor thermal protection can be adjusted with parameters. The thermal current I_T specifies the load current above which the motor is overloaded. This current limit is a function of the output frequency.

CAUTION! The calculated model does not protect the motor if the airflow to the motor is reduced by blocked air intake grill

NOTE! To comply with UL 508C requirements Motor over-temperature sensing is required at installation if the parameter is set to 0.

9.4 STALL PROTECTION

- 0 = No response
- 1 = Alarm
- 2 = Fault, stop according to P2.3

The motor stall protection protects the motor from short time overload situations such as one caused by a stalled shaft. The stall current is I_{nMotor}^{*} 1.3, stall time 15 seconds and stall frequency limit 25Hz. If the current is higher than the limit and output frequency is lower than the limit, the stall state is true and the drive reacts according to this parameter. There is actually no real indication.

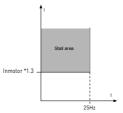


Figure 10.11: Stall characteristics

9.5 UNDERLOAD PROTECTION

0 = No response

1 = Alarm

2 = Fault, stop according to P2.3

The purpose of the motor underload protection is to ensure that there is load on the motor when the drive is running. If the motor loses its load there might be a problem in the process, e.g. a broken belt or a dry pump.

The underload protection time limit is 20 seconds, which is the maximum time allowed for an underload state to exist before causing a trip according to this parameter.

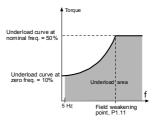


Figure 10.12: Underload protection

9.7 THERMAL PROTECTION OF THE MOTOR

- 0 = No response
- 1 = Warning
- 2 = Fault, stop mode after fault according to parameter 2.3

If tripping is selected the drive will stop and activate the fault stage. Deactivating the protection, i.e. setting parameter to 0, will reset the thermal model of the motor to 0%.

9.8 MOTOR AMBIENT TEMPERATURE

When the motor ambient temperature must be taken into consideration, it is recommended to set a value for this parameter. The value can be set between -20 and 100 degrees Celsius.

9.9 MOTOR COOLING FACTOR AT ZERO SPEED

The cooling power can be set between 0-150.0% x cooling power at nominal frequency. See Figure 10.13

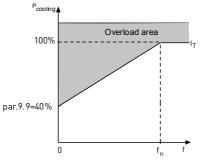


Figure 10.13: Motor cooling power

9.10 MOTOR THERMAL TIME CONSTANT

This time can be set between 1 and 200 minutes.

This is the thermal time constant of the motor. The bigger the motor, the bigger the time constant. The time constant is the time within which the calculated thermal model has reached 63% of its final value.

The motor thermal time is specific to the motor design and it varies between different motor manufacturers.

If the motor's t6-time (t6 is the time in seconds the motor can safely operate at six times the rated current) is known (given by the motor manufacturer) the time constant parameter can be set basing on it. As a rule of thumb, the motor thermal time constant in minutes equals to 2xt6. If the drive is in stop state the time constant is internally increased to three times the set parameter value. See also Figure 10.14.

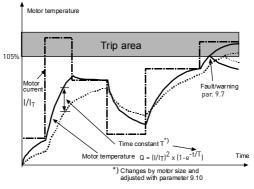


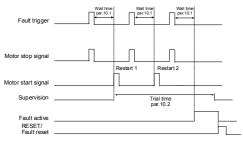
Figure 10.14: Motor temperature calculation

9.11 MOTOR PHASE SUPERVISION

Motor phase supervision of the motor ensures that the motor phases have an approximately equal current.

Activation mode	Description
0	No response
1	Warning
2	Fault, stop mode after fault according to ID506 (P2.3 Stop function)

Settings for P9.11, range 0-2:


10.9 FAULT AUTORESTART PARAMETERS (CONTROL PANEL: MENU PAR -> P10)

10.2 AUTOMATIC RESTART, TRIAL TIME

The Automatic restart function restarts the frequency converter when the faults have disappeared and the waiting time has elapsed.

The time count starts from the first autorestart. If the number of faults occurring during the trial time exceeds three, the fault state becomes active. Otherwise the fault is cleared after the trial time has elapsed and the next fault starts the trial time count again. See Figure 10.15.

If a single fault remains during the trial time, a fault state is true.

Autoreset function: (Trials = 2)

Figure 10.15: Automatic restart

10.10 PI CONTROL PARAMETERS (CONTROL PANEL: MENU PAR -> P12)

12.1 PI ACTIVATION

- 0 = Not used
- 1 = PI for motor control
- 2 = PI for external use (Only in API Full!)

12.2 PI CONTROLLER GAIN

This parameter defines the gain of the PI controller. If the value of the parameter is set to 100% a change of 10% in the error value causes the controller output to change by 10%.

12.3 PI CONTROLLER I-TIME

This parameter defines the integration time of the PI controller. If this parameter is set to 1,00 second the controller output is changed by a value corresponding to the output caused from the gain every second. (Gain*Error)/s.

12.7 FEEDBACK MINIMUM

12.8 FEEDBACK MAXIMUM

This parameter sets the minimum and maximum scaling points for feedback value.

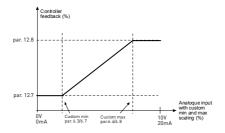


Figure 10.16: Feedback minimum and maximum

10.11 EASY USAGE MENU (CONTROL PANEL: MENU PAR -> P9)

13.2 DRIVE SETUP

With this parameter you can easily set up your drive for four different applications.

Note! This parameter is only visible when the Startup Wizard is active. The startup wizard will start in first power-up. It can also be started as follows. See the figures below.

NOTE! Running the startup wizard will always return all parameter settings to their factory defaults!

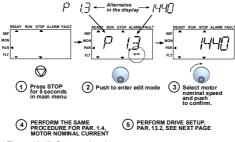


Figure 10.17: Startup wizard

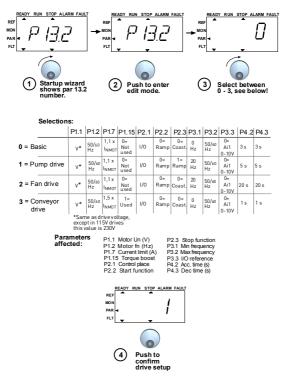
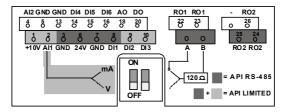


Figure 10.18: Drive setup

10.12 FIELDBUS PARAMETERS (CONTROL PANEL: MENU PAR -> S2)


SmartVFD COMPACT has a built-in Modbus RTU bus interface. The signal level of the interface is in accordance with the RS-485 standard.

The built-in Modbus connection of SmartVFD COMPACT supports the following function codes:

Function code	Function name	Address	Broadcast mes- sages
03	Read Holding Registers	All ID numbers	No
04	Read Input Registers	All ID numbers	No
06	Preset Single Registers	All ID numbers	Yes

10.12.1 Termination resistor

The RS-485 bus is terminated with termination resistors of 120 ohms in both ends. SmartVFD COMPACT has a built-in termination resistor which is switched off as a default (presented below). The termination resistor can be switched on and off with the right hand dip switch located above IO-terminals in the front of the drive (see below).

10.12.2 Modbus address area

The Modbus interface of SmartVFD COMPACT uses the ID numbers of the application parameters as addresses. The ID numbers can be found in the parameter tables in chapter 9. When several parameters/monitoring values are read at a time, they must be consecutive. 11 addresses can be read and the addresses can be parameters or monitoring values.

10.12.3 Modbus process data

Process data is an address area for fieldbus control. Fieldbus control is active when the value of parameter 2.1 (Control place) is 3 (=fieldbus). The contents of the process data has been determined in the application. The following tables present the process data contents in the General Purpose Application.

ID	Modbus register	Name	Scale	Туре
2101	32101, 42101	FB Status Word	-	Binary coded
2102	32102, 42102	FB General Status Word	-	Binary coded
2103	32103, 42103	FB Actual Speed	0,01	%
2104	32104, 42104	Motor freq.	0,01	+/- Hz
2105	32105, 42105	Motor speed	1	+/- Rpm
2106	32106, 42106	Motor current	0,01	Α
2107	32107, 42107	Motor torque	0,1	+/- % (of nominal)
2108	32108, 42108	Motor power	0,1	+/- % (of nominal)
2109	32109, 42109	Motor voltage	0,1	V
2110	32110, 42110	DC voltage	1	V
2111	32111, 42111	Active fault	-	Fault code

Table 10.3: Output process data:

ID	Modbus register	Name	Scale	Туре
2001	32001, 42001	FB Control Word	-	Binary coded
2002	32002, 42002	FB General Control Word	-	Binary coded
2003	32003, 42003	FB Speed Refer- ence	0,01	%
2004	32004, 42004	PI Control Refer- ence	0,01	%
2005	32005, 42005	PI Actual value	0,01	%
2006	32006, 42006	-	-	-
2007	32007, 42007	-	-	-
2008	32008, 42008	-	-	-
2009	32009, 42009	-	-	-
2010	32010, 42010	-	-	-
2011	32011, 42011	-	-	-

Table 10.4: Input process data:

Status word (output process data)

Information about the status of the device and messages is indicated in the Status word. The Status word is composed of 16 bits the meanings of which are described in the table below:

Bit	Description		
	Value = 0	Value = 1	
B0, RDY	Drive not ready	Drive ready	
B1, RUN	Stop	Run	
B2, DIR	Clockwise	Counter-clockwise	
B3, FLT	No fault	Fault active	
B4, W	No alarm	Alarm active	
B5, AREF	Ramping	Speed reference reached	
B6, Z	-	Drive is running at zero speed	
B7, F	-	Flux ready	
B8 - B15	-	-	

Actual speed (output process data)

This is actual speed of the frequency converter. The scaling is -10000...10000. The value is scaled in percentage of the frequency area between set minimum and maximum frequency.

Control word (input process data)

The three first bits of the control word are used to control the frequency converter. By using control word it is possible to control the operation of the drive. The meaning of the bits of control word are explained in the table below:

Bit	Description		
	Value = 0	Value = 1	
B0, RUN	Stop	Run	
B1, DIR	Clockwise	Counter-clockwise	
B2, RST	Rising edge of this bit will reset active fault		

Speed reference (input process data)

This is the Reference 1 to the frequency converter. Used normally as Speed reference. The allowed scaling is 0...10000. The value is scaled in percentage of the frequency area between the set minimum and maximum frequencies.

By using this Honeywell literature, you agree that Honeywell will have no liability for any damages arising out of your use or modification to, the literature. You will defend and indemnify Honeywell, its affiliates and subsidiaries, from and against any liability, cost, or damages, including attorneys' fees, arising out of, or resulting from, any modification to the literature by you.

Automation and Control Solutions

Honeywell International Inc. 1985 Douglas Drive North Golden Valley, MN 55422 customer.honeywell.com

® U.S. Registered Trademark
© 2015 Honeywell International Inc.
62-0312-04 Rev. 12-15