
Manual 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
User manual PG5. 

 

Document 26-732 / Version ENG12 / 21.08.2018 
 



























































































































































































































































































































































































































9-4  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.2 Layout of the IL Editor window 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The IL editor is similar to any other commercial text editor. The same editing features are 
present, such as Copy/Paste or Find/Replace. However, the IL editor offers more than just 
conventional text editing:  
 

- Automatic formatting of each line as it's entered 
- Syntax colouring, enabling each type of information to be identified 
- Integrated Symbol Editor window 
- Online step-by-step and debugging features 

 
 
 

Sequence of 
instruction 

processing within 
block 

Labels Operands Comments 

Mnemonics 

Start of COB  

End of COB 



 9-5 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.2.1 Editing a line of code 

 
 
 
 
 
IL program lines are formatted into 4 columns: 
 
Label  
Represented by the default colour red, the label is a symbol name for a program line, which  
is used as a destination for jump instructions, e.g. JR L Next . 
 
Mnemonic 
Represented by the default colour blue, the mnemonic is the instruction's name.  
 
Operand 
Represented by the default colour black, the operand defines the data type: input, output, 
flag, register, etc. which the instruction will operate on. 
 
The View Symbols or Values button allows either the operand address or its symbol to be 
displayed.  

 
Comment 
Program comments are shown in green and begin with a semi-colon. They are aligned on 
the right of the mnemonic and operand, but may also occupy a whole line.  
 
If the comment will take several lines, it can be edited between two directives: $SKIP and 
$ENDSKIP. These tell the assembler to disregard all text which appears between them. 
 
 
 
 
 
 
 
The View User or Auto Comment button can be used to view either the user comments 
attached to each line of the program, or the automatic comments attached to each symbol 
as defined in the Symbol Editor window. 

 
 

Label           Mnemo. Operand                       Comment 

View Symbols 
 or Values 

View User  or 
Auto Comment 



9-6  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.2.2 Automatic formatting of instruction lines 

If the Auto Format while typing option is enabled, whenever Enter is pressed at the end of a 
line, the line is auto-formatted using the user-defined column widths. Options are defined 
from the menu command Tools, Options. 
 
If auto-formatting is off, lines can be marked and formatted using the Tools, Auto Format 
menu command. 

 
 
9.2.3 Creating an organization block 

 
The Saia PCD programming language is structured using organization blocks, in which the 
user writes application programs.   
 
Each block provides a particular service: cyclical organization blocks (COB) for cyclical 
programs; sequential blocks (SB) for sequential programs, program blocks (PB) for 
subroutines; function blocks (FB) for subroutines with parameters; exception organization 
blocks (XOB) for exception routines. 
 
Blocks are delimited by a start instruction and an end instruction. For example, the 
instruction COB marks the start of a cyclic organization block, which ends with the same 
instruction preceded by the letter E for "end" (ECOB). All program code belonging to this 
block must be placed between the instructions COB and ECOB, never outside the block. 
 
Even the smallest PCD program will always have a COB. Other blocks may then be added 
as required. 
 
 

9.2.4 Sequence of processing for instructions and blocks 
Within each block, the PCD processes program instructions line by line, from the start 
instruction to the end-of-block instruction. 
 
The order in which instruction lines are written within an organization block is important. 
However, the order in which the organization blocks themselves are written is not 
important. Different rules define the sequence of block processing: 
 
In a PCD coldstart, the programmable controller first looks for XOB 16, the coldstart block. 
If it is present, it will always be processed first, regardless of whether it is at the beginning 
or end of the file. 
 
Then, the machine looks for COBs in the program and processes them in numerical order: 
COB 0, COB 1, … COB 15, regardless of the order in which they appear in the file. After 
the last COB, the program will start again from COB 0. 
 

COB   0     ;Start of COB 
      0     ;No supervision time 
STH   I 1   ;Example of logic equation 
AND   I 2 
OUT   O 32 
ECOB        ;End of COB 0 

IL file for a small program 

Sequence of 
instruction 
processing 
within block 



 9-7 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

All the blocks for sequential programs (SB), subroutines (PB) and functions (FB) are called 
by the user program with the instructions CSB (Call SB), CPB (Call PB) and CFB (Call FB). 
The user program therefore determines when and in what order SBs, PBs and FBs are 
processed. 
 
All exception blocks are automatically called as soon as the particular event concerned 
occurs. These events are unpredictable and may happen at any time. The order in which 
they are processed cannot be defined. Each hardware or software event is linked to a 
distinct XOB. These events cannot be modified by the user. However, the user is free to 
program which action to take within each of the XOBs. 

 
9.2.5 Rules to follow when editing blocks 

Even though blocks can be written in any order, the following rules must be followed: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Blocks cannot be written inside other blocks. They must always follow each other. 
No program instructions may be defined outside a block, with the exception of symbol 
definitions, texts and data blocks. 
 

COB  0 
0 

XOB  16 
… 
EXOB 
… 
PB   1 
… 
EPB 
… 
ECOB 

IL file 

XOB  16 
… 
EXOB  
 
COB  0 

0 
…  
ECOB 
 
PB   1 
… 
EPB 
 
 

IL file 



9-8  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.3 Introduction to the PCD instruction set 
 
This section provides and overview of the PCD instruction set. For more detailed 
information, consult the full description of each instruction given in the Instruction Guide 
26/733 or on the PG5 help screens. To obtain specific help about an instruction from the IL 
editor: write the instruction, put the cursor on it and press key F1. General help is also 
available with the menu Help, Instruction List Help. 
 

 
9.3.1 The accumulator (ACCU) 

The accumulator is a binary value whose state is set by binary instructions and a some 
integer instructions. The PCD has just one accumulator, which may be considered as a 
special kind of flag. The state of the accumulator can be forced with the ACC instruction, 
which also allows the accumulator to be set to the value of a status flag (see description of 
status flags). 

 
 
 
 
 
 
 
 
 
 
 
 

 

Examples: 
ACC H 
Forces accumulator state high 
 
ACC L 
Forces accumulator state low 
 
ACC C  
Inverts (complements) accumulator state 
 



 9-9 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.3.2 Binary instructions 

Binary instructions use operands that may have just one of two distinct states: 0 or 1 (low 
or high). These instructions are used to perform binary equations with the states of PCD 
inputs, outputs, flags, counters and timers. 
 
Binary instructions always involve the accumulator. Some binary instructions affect the 
state of the accumulator: 

 
Other instructions read the state of the accumulator to execute a binary function and put 
the result back into the accumulator: 
 

 
 
 
 
 
 

ACCU 

LU * 

Operands: 
- input 
- output  
- flag 

Instructions: 
ACC 
STH 
STL 

 

Examples: 
ACC H 
Forces accumulator state high 
 
ACC L 
Forces accumulator state low 
 
STH I 4  
Copies state at input 4 to accumulator.  
The accumulator state will be high if 24 volts 
are applied to input 4. 
The accumulator state will be low if zero volts 
are applied to input 4. 
 

Examples: 
ANH I 5 
Reads accumulator state and executes logical 
AND function with state of input 5. The 
accumulator is set to the result. 
 
ORH F 100 
Reads accumulator state and executes logical 
OR function with the state of flag 100. The 
accumulator is set to the result. 
 
XOR T 3 
Reads accumulator state and executes logical 
XOR function with the state of timer 3. The 
accumulator is set to the result. 
 
 

Operands: 
- input 
- output   
- flag 

ACCU 

LU 

Instructions: 
ANH 
ANL 
ORH 
ORL 
XOR 
DYN 



9-10  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
The result of any binary equation is always saved in the accumulator. The OUT instruction 
allows the content of the accumulator to be copied to an output or flag: 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Example: programming a simple binary equation 
 
This example of a program performs the binary equation:  O32 = I0*I1+I2+I3*I4*I5  
It may also be represented by the following diagram : 

 
 

A binary equation always starts with a STH or STL instruction, which will then be followed 
by the necessary ANH (*), ORH (+), XOR functions.  
Note that the ORH instruction has priority over ANH. Each ORH instruction marks the start 
of a new line of contacts in the above diagram. The partial or final result of a binary 
equation is always put in the accumulator. The OUT instruction enables the accumulator 
result to be used to modify the state of an output or flag. 

 
 
COB 0 ;Start of cyclic program 
 0 
STH I 0 ;Copies state of input I 0 to accumulator: Accu = I0 
ANH I 1 ;AND function between state of accumulator and  
  ; input 1:Accu = I0*I1 
ORH I 2 ;OR function between state of accumulator and  
  ; input 2:Accu= I0*I1+I2 
ORH I 3 ; Accu = I0*I1+I2+I3 
ANH I 4 ; Accu = I0*I1+I2+I3*I4 
ANH I 5 ; Accu = I0*I1+I2+I3*I4*I5 
OUT O 32 ;Copies result of equation present in accumulator  
  ; to output 
ECOB  ;End of cyclic program 

 

ACCU 

LU Operands: 
- output   
- flag 

Instruction: 
OUT Example: 

OUT O 32 
Copies accumulator state to output 32. 
If accumulator state is high, 24 volts will be 
applied to output 32. 
If accumulator state is low, zero volts will be 
applied to output 32. 
 
 
 
 

24 VDC Relay 



 9-11 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

Example: Programming a binary equation with a specific order of evaluation. 
 
This example of a program performs the binary equation :  O33 = (I1*I2+I4)*I3  
It may also be represented by the following diagram : 
 
 
 
 
 
 
It is sometimes necessary to change the order of priority of binary functions. Generally, we 
do this by putting brackets into the equations. However, the PCD instruction set does not 
support brackets. The equation must therefore be divided into two smaller equations. The 
first equation works out the result of the bracketed part and saves it temporarily to a flag, 
while the second equation takes the interim result saved on the flag and calculates the final 
result. 

 
COB 0   
 0 
STH I 1 ;First equation   
ANH I 2 
ORH I 4 
OUT F 0 ;Result of bracketed function: F0 =(I1*I2+I4) 
 
STH F 0 ;Second equation 
ANH I 3 
OUT O 33 ;Final result: O 33 = F0*I3 
ECOB  

 
Other binary instructions also allow the accumulator to be used to modifiy the state of an 
output or flag. Each instruction supports a different function. 
 

  

 
 
 

ACCU 

LU Operands: 
- output   
- flag 

Instruction: 
SET 
RES 
COM 

Example: 
SET O 32 
If accumulator state is high, output 32 will be 
forced high. Otherwise the output will remain 
in its current state. 
 
RES O 32 
If accumulator state is high, output 32 will be 
forced low. Otherwise the output will remain 
in its current state. 
 
COM O 33 
If accumulator state is high, output 33 will be 
inverted high. Otherwise the output will 
remain in its current state. 
 
 
 
 
 
 



9-12  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
Example:  
This example shows differences between the instructions OUT, SET, RES, and COM 
 
COB  0 
 0 
STH  I 0 
OUT  O 32  ;copy I 0 to O 32   
 
STH   I 0 
SET  O 33  ;set output 33 to 1 
 
STH  I 1 
RES  O 33  ;set output 33 to 0 
 
STH  I 0   ;on rising edge of I 0 
DYN  F 1 
COM  O 34  ;invert output 34 
ECOB 
 
 
Some binary instructions end with the letter H or L. Instructions that end with L will invert 
the state of any information before performing their function. 

   

O 34 

 I 0 

O 32 

 I 1 

 I  0 

O 33 

Examples: 
STH I 4 
Copies state of input 4 to accumulator. 
Accumulator state is high if 24 volts are 
applied to input 4. 
 
STL I 4 
Copies inverse state of input 4 to 
accumulator. Accumulator state is low if 24 
volts are applied to input 4. 
 
ANH I 5 
Performs a logical AND function between 
the accumulator state and the state of input 
5.    
 
ANL I 5 
Performs a logical AND function between 
the accumulator state and the inverse state 
of input 5.    

Operands: 
- input 
- output   
- flag 

ACCU 

LU 

Instructions: 
ANH 
ORH 

Operands: 
- input 
- output   
- flag 

ACCU 

LU 

Instructions: 
ANL 
ORL 

Binary 
inversion 

 I 0 



 9-13 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.3.3 Edge detection 

Binary instructions generally use the low or high binary state to perform a binary function or 
modify the state of an output or flag.  
 
Sometimes it is not the low or high binary state that interests us, but the change of state. 
 
To detect a rising edge, proceed as follows: place the result of a binary equation in the 
accumulator and use the DYN instruction to find the positive change. After the DYN 
instruction, the accumulator state will be high if a positive change has been detected, 
otherwise it will be low. The flag used by the DYN instruction may only be used for a single 
'dynamisation' instruction. This is because it is used to conserve the state for the next 
program cycle. 
 
Example:  detection of a rising edge    
 
STH   I 0 
DYN   F 3 
COM   O 34 
 
Example:  detection of a falling edge    
 
STL   I 0 
DYN   F 3 
COM   O 34 
 
To help you see the influence of the DYN instruction on the program shown above, try 
removing the DYN instruction and see how the program behaves. 
 

O 34 

O 34 

 I 0 

 I 0 



9-14  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.3.4 Status flags  
Unlike binary instructions, integer 'word' instructions rarely use the accumulator. However, 
they almost always modify status flags. 
 
The PCD's 4 status flags are modified by word instructions and inform us of the result.  

 
Flag positive P Set if the result is positive. 
Flag negative N Set if the result is negative 
Flag zero Z Set if the result is zero 
Flag error E Set in case of error 

 
The error flag may be set for a number of reasons, causing the exception block XOB 13 to 
be called: 
- Overflow caused by an instruction which multiplies two large numbers 
- Division by zero 
- Square root of a negative number 
- Error assigning the communications interface (SASI instruction) 
- etc 
 
Example:  Status flags after a subtraction 
 
Status flags are set depending on the result of a subtraction (R 3 = R 1 – R 2). Register 
values are shown in square brackets [ ]. The result of the subtraction is negative: flag N 
alone is set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
If necessary, status flags can be copied to the accumulator for use with binary instructions, 
program jump instructions, or when calling PBs, FBs or SBs: 

 
ACC  P Copy status flag  P to accumulator 
ACC  N Copy status flag  N to accumulator 
ACC  Z Copy status flag  Z to accumulator 
ACC  E Copy status flag  E to accumulator 

Status flags: 

Word instruction: 
SUB   R 1 
 R 2 
 R 3 

R 2  [11] 

ALU 
32Bit 

Operands: 
 

R 1 [10] 
Result: 
 
R 3 [-1] 

 

E Z N P 
0 0 1 0 
 



 9-15 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.3.5 Instructions for timers 
 
 
 
 
 
 
 
 
 
 

Timers contain two values: the integer delay time value and the timer's binary state.  
To implement a delay time, load the time value as a positive integer that will determine the 
length of the delay time in tenths of a second1. The controller will automatically decrement 
the time value until it reaches zero. The timer's binary state is high while the time value is 
decrementing, and goes low when the time value reaches zero. 

 
 
 
 
 
 
 
 
 

Example: 
Send a one second pulse to output 36 for each rising edge at input 2 
 
State diagram: 

IL program: 
 
COB   0 
      0 
STH   I 2    ;Detection of rising edge at input 2 
DYN   F 2    ;sets accu state high 
LD    T 4    ;If accu is high, load time delay for 10 units of time 
      10 
STH   T 4    ;Copy logical state of time delay to output 36 
OUT   O 36 
ECOB 

                                                      
1  A time base other than 1/10th of a second (default value) can also be set. This can be done from 
the Build Options.. 

Loading a delay time 
LD       T 4 
    
If the accumulator state is high, timer  
T 4 will be loaded with a constant of 
10. Otherwise the timer will keep its 
current value. 

Binary state   T 4 

 Integer value  T 4 

Temps 

LD T 4 

      

 

STH T 4 

Reading the state of the timer 
 
Use a binary instruction, such as: 
 
STH T 4 , ANH T 4, ORH T 4, … 

  I 2 

 Binary state   T 4 

 O 36 

 Integer value T 4 

1s 1s 

Time 



9-16  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
 

Example: 
Send a one-second pulse to output 37 with a 5 second delay for each rising edge at input 3 
 
State diagram: 

 
IL program: 
 
COB   0 
      0 
STH   I 3  
DYN   F 3     
LD    T 2    
      50      
LD    T 3    
      60      
STH   T 2    
XOR   T 3   
OUT   O 37 
ECOB 

 
 
 

 I 3 

 Binary state   T 2 

 O 37 

 Integer value T 2 

6s 

1s 

Time 

 Binary state   T 3 

 Integer value T 3 

5s 



 9-17 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.3.6 Instructions for counters 
 
 
 
 
 
 
 
 
 
 
 

Like timers, counters also have two values: the integer count value and the binary state of 
the counter.  
To implement counting, load the counter with a positive integer value. 
Unlike timers, counters are only incremented or decremented by instructions in the user 
program. The counter's binary state is high when the count value is greater than zero and 
goes low when the count value reaches zero. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Status flags  
Instructions INC and DEC counter modify the status flags depending on the result of the 
operation (Positive, Negative, Zero, Error). 
 
Example:  Counting pulses from a binary input with a counter. 
 
COB   0 
      0 
STH   I 2    ;Copy input state to accumulator 
DYN   F 3    ;Force accu state high at positive edge of I 2 
INC   C 35   ;If accu state is high, increment counter 
ECOB 
 
Instructions STH and DYN read information from input 2 and set the accu state high for a 
rising edge or low in the absence of an edge. Depending on the accu state, the INC 
instruction will increment counter 35. 
 

Loading a counter 
LD       C 35 
   10 
If accumulator state is high, counter 
35 will be loaded with a constant of 
10. Otherwise the counter will keep 
its current value. 

Reading the state of a counter 
 
Use a binary instruction, such as: 
 
STH C 35, ANH C 35, ORH C 35, … 

Incrementing a counter 
INC C 35 
If accumulator state is high, counter 
35 will increment by one unit. 
Otherwise the counter will keep its 
current value. 

Decrementing a counter 
DEC C 35 
If accumulator state is high, counter 
35 will decrement by one unit. 
Otherwise the counter will keep its 
current value. 

 Binary state C 35 

 Integer value C 35 

Time 

LD  C 35 
    10 

STH C 35 

DEC C 35 INC C 35 



9-18  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.3.7 Accumulator-dependent instructions 
We have seen that binary instructions make much use of the accumulator, and that some 
word instructions also use it.  
 
But not all instructions use the accumulator in the same way. There are 7 instructions which 
use it in a special way. These are the accumulator-dependent instructions. They are only 
processed if the accumulator has previously been set high. The accumulator state is 
therefore a determining condition. 
 
The 7 accumulator-dependent instructions are listed below : 

  
SET  
RES  
COM  
LD Only for timers and counters  
LDL Only for timers and counters 
INC Only for timers and counters 
DEC Only for timers and counters 

 
Example: 
Create a time base that inverts an output once every second. 
This example uses three instructions. The first (STL) uses the accumulator to put in it the 
timer's inverse state. The following two (LD and COM) depend on the accumulator. They 
will only load the time base and invert the output if the accumulator has previously been set 
high by the instruction STL. 
 
COB   0 
      0 
STL   T 1   ;If the timer state is low, the accu state will be high 
LD    T 1   ;load time delay with 10 units of time 
      10 
COM   O 38  ;invert output state 
ECOB 

 



 9-19 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.3.8 Word instructions for integer arithmetic 
These instructions are used for calculating arithmetical equations using integer format 
registers and constants. Each arithmetical instruction has several lines and applies 
operands to registers or constants, but the result will always be placed in a register. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Status flags 
All the above arithmetical instructions modify status flags according to the result of the 
operation (Positive, Negative, Zero, Error), with the exception of the instruction for loading 
a register with a constant (LD). 
 
Differences between registers and timers/counters 
Unlike counters, the instructions for loading a constant into a register, incrementing a 
register or decrementing a register are not dependent on accumulator state. 
The register value to be incremented or decremented may be either a positive or negative 
integer. 
 
Example: 
Compare the contents of two registers and switch on three outputs, according to the 
following conditions: 

 
 
 
 
 

The compare instruction does a subtraction R 0 – R 1 and sets status flags according to the 
result: 

 
 
 
 
 
 

CMP   R 0   ;Perform subtraction R 0 – R 1, status flags will be  
      R 1   ; modified according to result of subtraction 
ACC   P 
OUT   O 32  ; R 0 > R 1 
ACC   Z 
OUT   0 33  ; R 0 = R 1 
ACC   N 
OUT   O 34  ;R 0 < R 1 

 

Addition Subtraction Square root 
ADD   R 0 
          R 1 
          R 
3 ;R3=R0+R1 

SUB   R 0 
          K 18 
          R 3 ;R3=R0-
18 

SQR  R 100 
          R 101  

Multiplication Division Comparison 
MUL   K 5 
          R 1 
          R 3 ;R3=5*R1 

DIV   R 0 
         R 1 
         R 3 ;R3=R0/R1 
         R 4 ;Reste 

CMP  R 0 
          R 1 

Increment  Decrement  Initialize register 
INC R 0 ;R0= R0+1 INC R 0 ;R0= R0+1 LD  R 0 

      K 19 ; R 0 = 19 

Registers O 32 O 33 O 34 
R 0 > R 1 High Low Low 
R 0 = R 1 Low High Low 
R 0 < R 1 Low Low High 

Registers P N Z E 
R 0 > R 1 1 0 0 0 
R 0 = R 1 1 0 1 0 
R 0 < R 1 0 1 0 0 



9-20  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.3.9 Word instructions for floating-point arithmetic 

These instructions are used for calculating arithmetical equations using floating-point 
format registers and constants. Each arithmetical instruction starts with the letter F to 
indicate that it's a floating-point instruction. The operands of these instructions are always 
registers, never constants. If a constant is needed, it must be loaded into a register and 
then the register can be used in the floating-point instruction. 

 
Addition Subtraction Square root 
FADD   R 0 
            R 1 
            R 3 ;R3=R0+R1 

FSUB   R 0 
             R 1 
             R 3 ;R3=R0-R1 

FSQR  R 100 
            R 101 ;result 

Multiplication Division Comparison 
FMUL   R 0 
             R 1 
             R 3 ;R3=R0*R1 

FDIV    R 0 
            R 1 
            R 3 ;R3=R0/R1 

FCMP  R 0 
            R 1 

 Sine   Cosine  Arc tangent 
FSIN   R 10 
           R 11 ;result 

FCOS  R 10 
            R 11 ;result 

FATAN   R 10 
               R 11 ;result 

Exponent Natural logarithm Absolute value 
FEXP  R 20 
           R 21 ;result 

FLN     R 20 
            R 21 ;result 

FABS   R 30 
             R 31 ;result 

 
Status flags 
All the above instructions modify the status flags, with the exception of the LD instruction 
for loading a floating-point format constant. 
 

 
 
 

  
 
9.3.10 Conversion of integer and floating-point registers 

The PCD has separate instructions for arithmetic operations on integers and floating-point 
numbers. If an application program has to add or multiply two registers, one containing an 
integer and the other a floating-point number, one of the registers must be converted either 
to integer or floating-point before performing the arithmetical operation – both registers 
must contain data in the same format.  

 
 
 
 
 
 
9.3.11 Index register 

Each COB has a special register: the index register. The content of the index register can 
be checked with the following instructions: 
 
SEI K 10 SEt Index register  Loads the index register with a constant 

of 10 
INI K 99 INcrement Index register Increments the index register and sets 

accu state high as long as: 
Index register <= K 99 

DEI K 5 DEcrement Index register Decrements the index register and sets 

Initialize a register 
LD  R 0 
      3.1415E0 ; R 0 = PI 

Convert integer-fltg point Convert fltg point-integer 
IFP      R 0 ; integer -> float 
            0    ; exponent 

FPI       R 0 ;float ->integer 
             0    ; exponent 

PG5 WS-K7-ProIL-E1, 19.09.03 

 



 9-21 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

accu state high as long as: 
Index register >= K 5 

STI   R 0 STore Index register Copies index register to register 0 
RSI   R 0 ReStore Index register Copies register 0 to index register 

 
Many PCD instructions support the use of the index register. This register allows indirect 
addressing of registers, flags, inputs, outputs, timers etc, used by instructions in the 
program. These instructions are the same as those normally used, but the mnemonic has 
an additional letter X. 
 
Example: 
Registers are non-volatile. This means they keep their information when the power supply 
is cut or if there is a cold-start. If we want to make a range of 100 registers volatile, we 
would have to initialise these 100 registers with the value zero during the cold-start. To 
initialise a register with zero, we can use the following instruction: 
 
LD   R 10 
     K 0 
 
If we have 100 registers (R 10 to 109) to initialise, we would have to write this instruction 
100 times, changing the register address each time. That would be rather tedious. 
 
A better solution is to initialise the index register with an index of zero and implement a 
program loop to load the first register with zero, incrementing the index. Therefore, for each 
loop, we load zero into a different register (R 10, R 11,…. R 109). At the 100th loop, the 
index counter reaches the maximum index value (K 99) and forces the accumulator state 
low. This causes the loop to be exited so that the rest of the program can be processed. 
 
 XOB  16 ;Cold-start block 
 SEI  K 0 ;Index = 0 
Loop: LDX  R 10 ;Load register address 10 + index with zero 
 INI  K 99 ;Increment index and modify accu state 
 JR  H Loop ;If accu is high, program jump to label Loop 
 EXOB 
  
 COB  0 ;Cyclic organization block 
  0 
 ... 
 ECOB 



9-22  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.3.12 Program jumps 

The IL instruction set has three program jump instructions. They allow a sequence of 
instructions to be processed according to a binary condition binary, or program loops to be 
implemented for repetitive tasks (indexing). 

 
 
 
 
 
 
 
 

The jump destination is generally indicated by a label that defines a line of the program. 
However, it is also possible to define a relative jump with the number of lines to jump 
forward or back. 
 
Jump using a line label :            Jump using the number of lines: 
 
      JR   L  Next JR   L  +1 
      INC  R 10  INC  R 10 
Next: NOP  NOP 
 
The jump must always occur within a current block (COB, PB,…) never outside it. 
 
If necessary, the jump may be implemented always, or only under a predetermined binary 
condition, such as the accumulator state or that of a status flag. 

 
Syntax for an unconditional jump instruction 
Mnemonic Label Description 
JR 
JPD 
JPI 

 
 

Jump always implemented on line 
corresponding to label 

 
 

Syntax for a conditional jump instruction 
Mnemonic Condition Label Description 
JR 
JPD 
JPI 

H 
L 
Z 
P 
N 
E 

 
 

If accu is high  
If accu is low  
If status flag Z is high  
If status flag P is high 
If status flag N is high 
If status flag E is high 

 
 

Example:  Count pulses from a binary input binary with a register (relative jump) 
 
Unlike counters, the instruction to increment a register does not depend on accumulator 
state. It is thereful practical to use a jump instruction to increment a register when only that 
is necessary. 

 
      COB   0 
             0 
      STH   F 1         ;Copy flag state to accumulator 
      DYN   F 2         ;Force accu high on rising edge of flag F1 
      JR    L  Next     ;If accu state is low, jump to label Next 

Jump instructions 
JR 
 
JPD 
 
JPI 

Jump relative 
 
Jump direct 
 
Jump indirect 

Jumps a few lines forward or back from the line containing 
the JR instruction  
Jumps to a line number counting from the start of block 
(COB,PB,…) 
As JPD, but the line number is contained in a register 



 9-23 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

      INC   R 10 
Next: NOP 
 ... 
ECOB 

 
The instructions STH and DYN read information from flag F 1 and set the accu state high 
for a positive flank or low in the absence of a flank. Depending on accu state, the  
instruction JR either jumps to the line corresponding to the label Next: or increments the 
register with the instruction INC. The letter L indicates the condition for implementing a 
jump (in this example, the jump will only be implemented if the accumulator state is low).  

 
Example:  Solution with an indirect jump 
 
      COB   0 
            0 
      LD    R 2         ;Load line number into register 
            Next 
      STH   F 1         ;Copy flag state to accumulator 
      DYN   F 2         ;Force accu state high on rising edge  
                   ;  of flag F1 
      JPI   L  2        ;If accu is low, jump to  
                        ; line number defined in register 2 
      INC   R 10 
Next: NOP 
  
ECOB 
 
The indirect jump offers great flexibility. The program can itself modify the line number to 
which it will jump. 
 
 



9-24  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.4 Editing a first application program 
 
Count the number of spaces left in an 8-space parking lot and illuminate a red lamp when it 
is full. 

 
When the PCD powers up, we assume that all parking spaces are available. We must 
therefore start by initialising the free space counter with the value 8. This initialisation takes 
place once only, when the PCD starts up. We will therefore program it in the cold-start 
block: XOB 16. The remaining program functions will be carried out by a cyclical 
organisation block (COB). 
 
At the entrance, the sensor Car_incoming delivers a pulse each time a new vehicle enters. 
The rising edge of this signal must be detected to decrement the free space counter.  
 
At the exit, a second sensor Car_outgoing delivers a pulse each time a vehicle exits. The 
rising edge of this signal must be detected to increment the free space counter. 
 
If the parking lot is full, the counter's integer value will indicate zero available spaces. The 
counter's logic state informs us of this situation when it is low. The red lamp at the entrance 
to the parking lot must therefore be illuminated. 
 

Vehicle entrance: 
Car_incoming I 0 

Vehicle exit: 
Car_outgoing I 1 

The red lamp 
comes on when 
the parking lot is 
full:  
Red_light                    
O 32 



 9-25 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
 
 
 
 
 
 
 
 
 
 
 

;Cold start organisation block   
;------------------------------   
 
    XOB   16                    ;Program executed at start up 
    ACC   H  
    LD    Number_of_free_slots  ;Initialize the free slots counter  
          8                     ; with the value 8 (unconditionally) 
    EXOB                        ;End of start-up program    
 
;Cyclical Organisation Block 
;--------------------------- 
 
    COB   0                     ;Cyclical program  
          0                     ;No supervision time  
 
    STH   Car_incoming          ;A car comes into the parking:  
    DYN   Dynamise_incoming_car_signal ;On the rising edge, 
    DEC   Number_of_free_slots  ; decrement number of free parking slots 
 
;----------------------------------------     
 
    STH   Car_outgoing          ;A car leaves into the parking:  
    DYN   Dynamise_leaving_car_signal  ;On rising edge, 
    INC   Number_of_free_slots  ; increment number of free parking slots 
 
;---------------------------------------- 
 
    STL   Number_of_free_slots  ;Ff no more free parking slots 
                                ; (counter state= Low) 
    OUT   Red_light             ; set the  red light 
  
    ECOB                        ;End of Cyclical program  

 



9-26  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.5 Building the program  

The user program is fully edited, but not yet usable by the PCD. It must be translated into a 
binary file. This is what the programming tool does when the user activates the button or 
menu Rebuild All Files in the Project Manager or IL editor. 
 
The Messages window tells us how the build is proceeding. It will be noted that the build 
has assembly and linkage stages. If the program has been edited correctly, the build will 
end with the message: Build successful. Total errors 0, Total warnings: 0 
 
 
 
 
 
 
 
 
 
 
 
 
Any errors will be indicated by a message in red. A double mouse-click on an error 
message will, if possible, open the relevant editor at the correct location. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Build All 
Files 

Double mouse-click 
on error message 

The error is 
marked in red 

Correction of 
error 

  
 



 9-27 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.6 Load program into PCD 

Now that the application program is ready, it needs to be transferred from the PC into the 
PCD. In Project Manager, use either with the Online, Download Program menu command, 
or press the Download Program toolbar button. 
 
If any communications problems arise, check the Online Settings, the cable between the 
PC and the PCD (PCD8.K111 or USB), and make sure the PCD is switched on. A USB 
connection may take a few seconds before the PC is able to recognize the attached device. 
 
 

9.7 Debugging a program 
Programs are not always perfect in their first version. It is helpful to test them carefully. 
Testing a program is supported by the same editor used for editing it. 
 
The white lines represent the original source code, with symbols and comments. 
 
The grey lines represent the code produced by the build, with the addresses of operands 
and program line numbers. 
 
  

Download  
Program 



9-28  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.7.1 Go On/Offline, Run and Stop  

Online mode allows communication with the PCD to monitor the mode of operation (Run, 
Stop, Step-by-step). Any information needed to test the program can also be displayed. 
 

Press Go On/Offline button   

Put controller into Run mode with Run 
button 

 

 
At the same time, note the RUN lamp, located on the front of the PCD. When the Run 
button is pressed, the RUN lamp comes on. The PCD is executing the user program. 
 
When the Stop button is pressed, the RUN 
lamp goes off. The PCD stops executing 
the user program. 

 

 
After Stop, note the line shown in red. It indicates the instruction at which the program 
stopped. The number in square brackets shows the contents of counter 1400. To the right 
is shown the accumulator and status flags states, and the index register value. 
 
 
 
 
 
  

 



 9-29 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.7.2 Step-by-step mode 
If the PCD is in Run mode, mark the first line to observe in step-by-step mode and press 
the Run to Cursor button. The PCD stops when it reaches the line with the cursor. Now 
begin step-by-step program execution by pressing the F11 key, or one of the buttons 
below. 
 
If the program calls any PBs, FBs or SBs, it is not always necessary to step through these 
with step-by-step mode. The following three options are available: 
 
Step In: Enter the block and step through it. 
 
Step Over: Process the called block in Run, then continue in step-by-step after returning to 
the block that made the call. 
 
Step Out: If the program has entered a block whose content is of no interest, it is possible 
to exit it immediately in Run mode and then continue in step-by-step mode after returning to 
the block that made the call. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For each program step, note the line shown in red. It moves to the following instruction line. 
The figure in square brackets represents the logical state of input I 1. To the right are 
shown the accumulator and status flags states, and the index register value.  
 

Run to Cursor 

COB  0 
 0 
 
 
 
 
CPB  7 
 
 
 
 
 
 
 
ECOB 

PB  7 
 
 
 
 
 
 
 
CPB  2 
 
 
 
 
 
 
 
 
 
EPB 

PB     2 
 
 
 
 
 
 
 
 
 
 
 
EPB 

Call block PB 7 in step-
by-step mode 

After returning to block, 
continue in step-by-step 

Call block PB 2 in Run 
mode 

Exit block in Run mode 

Run mode 

Step-by-step mode 



9-30  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.7.3 Breakpoints  
Breakpoints let you stop the program at an event linked to a program line or a symbol: 
State of an input, output, flag, status flag  
Value present in a register or counter 
 
Breakpoint on a symbol 
The breakpoint condition can be defined with the help of the Online Breakpoints menu, or 
of the Set/Clear Breakpoint button. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Using the above window, define the symbol type and address, or just drag a symbol from 
the Symbol Editor into the Symbol Name field, then set the breakpoint condition and 
state/value.  
 
Selecting the Set & Run button forces the PCD into conditional run mode. The PCD's Run 
LED flashes and the PCD's Run button alternates between green and red. 
 
The PCD automatically goes into stop mode when the breakpoint condition is reached. For 
example, when an instruction modifies the value of counter 1400 with a value greater than 
4. The line following the last instruction processed by the PCD will be marked in red. It is 
then possible to continue processing the program in step-by-step mode, or with another 
breakpoint condition. 
 
If necessary, conditional run mode can be interrupted in the following ways: 
The Clear - Run button forces the PCD into RUN mode. The PCD's Run LED comes on 
and the PCD's Run button turns green. 
The Clear - Stop button forces the PCD into stop mode. The PCD's Run LED goes off and 
the PCD's Run button turns red. 
 
Breakpoint states which have been used before are stored in the breakpoint History list. 
They can be selected and activated with the Set & Run button. 
 
Breakpoint on a program line 
By selecting a program line, followed by the menu or button Online, Run To Cursor, the 
program can be made to stop at the line. 
 
 
 
 
 
 
 

PG5 WS-K7-ProIL-E1, 19.09.03 

 

Run to Cursor 

Set/Clear 
Breakpoints 
 



 9-31 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.7.4 Online modification of the program and data 
When testing a program step-by-step, it is helpful to modify the states/values of certain 
operands/symbols and check program behaviour under certain conditions. 
 
Select one of the code view lines (grey) using the mouse and right-click to display the 
context menu.  
 
The Edit Data context menu allows you to modify the operand state/value in the instruction 
selected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Edit Instruction command allows you to modify the mnemonic and address of the 
operand of the selected instruction line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Status flags can also be modified with the help of the Edit Status context menu. 
 

Edit Data  

Edit Instruction  



9-32  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

 
9.7.5 Viewing and modifying symbol states with the Watch Window 

Another useful way of testing and viewing the state of symbols in our example is provided 
by the Watch Window. Use the Symbol Editor's Add to Watch Window command from the 
context menu.  
 
Or press the Watch Window button, then drag symbols from the Symbol Editor into the 
Watch Window. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To modify the state/value of one of the symbols in the window, proceed as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Watch Window 

Move mouse pointer to button at start of 
the line, and press the left-hand button 

Drag the symbol into 
the Watch Window 

Symbols with their 
comments and 
states/values 

1. Start/Stop Monitoring 

3. Download Values 

2. Position mouse pointer on value to be   
    edited. Double left-click with mouse 
    and edit new value. 



 9-33 
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.8 Commissioning an analogue module 
 

All program instructions presented up until now used  digital inputs or outputs, which are 
accessed directly for an a single IL instruction, e.g. ANH I 45. 
 
Analogue I/Os need a small program to read the values from each type of analogue 
module, which manages the multiplexing and A/D and D/A conversion. These can be 
programmed in IL, or using the new Device Configurator's Media mapping features which 
are described in the Device Configurator documentation.  
 

9.8.1 Example for PCD2.W340 analogue input modules 
If the PCD is equipped with a PCD2.W340 module, which has 8 universal input channels, 
the following routine may be used: 
 
BA  EQU  O 96 ; Module base address in PCD 
  
 ACC  H  ; ACCU must be high 
 LD  R 100  ; Defines the measuring channel (0..7) 
  2 
  
 MUL  R 100   
  K 32  ; Calculates 
  R 100  ; control byte 
 ADD  R 100  ; including 
  K 264  ; release bit 
  R 100   
  
 SET  BA+15  ; Triggers A/D conversion 
  
 BITO  9  ; Sends control byte 
  R 100  ; including release bit 
  BA+0  ; to W3xx 
  
 BITIR 12  ; Reads 12 bits (0..4095) into R 77 
  BA+0    
  R 77    
  
 RES  BA+15  ; Stop A/D conversion 
 
 
The PCD2.W340 is a general-purpose analogue module which supports ranges 0..10V, 
0..2.5V, 0..20mA and Pt/Ni 1000 temperature sensors. A bridge must be selected on the 
module to define the measurement range. Resolution is 12 bits, with a value range of 
0..4095.  
 
The routine shown above enters the channel defined in register 100 and supplies a raw 
measurement to register 77. For this module with a resolution of 12 bits, that corresponds 
to a measured value between 0 and 4095.  
 
The user program must then convert the measurement into a standard physical unit. 
 



9-34  
 

User manual PG5 I  Chapter 9  I  Programming in IL  I  29.08.18 

9.8.2 Example for PCD2.W610 analogue output modules 
Outputs work in a similar way to inputs. 
 
If the PCD is equipped with a PCD2.W610 module, which has 4 universal analogue output 
channels, the following routine may be used: 
 
 
BA  EQU  O 96 ; Module base address in PCD 
 ACC  H  ; ACCU must be high  
 LD  R 100  ; Defines output channel (0..6) 
  2    
 BITOR  2  ; Transfers channel to W6x0 
  R 100    
  BA+0    
 BITOR  2  ; Writes 2 filler bits 
  R 100 
  BA+0 
 LD  R 277  ; Defines digital value of output (0..4095) 
  3879  
 BITO R 12 ; Transfer 12 bits of output value to W6x0 
  R 277   
  BA+0   
 SET BA+12  ; Triggers D/A conversion 
 
 
A bridge must be selected on the module to define the output range: 0…20 mA or 0…10 V. 
Resolution is 12 bits, equating to 4095 distinct setpoint states.  
 
The integer value at register 12 determines the output voltage or current at the channel 
defined in register 100: 
 

Input value at register 12 Output voltage [V] Output current [mA] 
0   0   0 
2047   5  10 
4095 10  20 

 
 
 
For more detailed information and sample IL programs for analogue modules, please refer 
to your hardware manual or the support website:   
http://www.sbc-support.com 
 
 
 

 

http://www.sbc-support.com/























































































































































	Leere Seite
	K1_E Quick Start.pdf
	1 PCD – Quick-start
	1.1 Introduction
	1.2 Preparing the hardware
	1.2.1 Example: Stairway lighting
	1.2.2 Connection diagram of PCD2.M5540
	1.2.3 PCD2.M5540 assembly
	1.2.4 Wiring

	1.3 Editing the program
	1.3.1 Software Installation
	1.3.2 Starting the PG5
	1.3.3 Opening a new project
	1.3.4 Opening an existing project
	1.3.5 Configuration
	1.3.6 Adding a new program file
	1.3.7 Opening an existing file
	1.3.8 Editing a program

	1.4 Running and testing the program
	1.4.1 Building the program
	1.4.2 Downloading the program into the PCD

	1.5 Finding and correcting errors (Debugging)
	1.6 Correcting a program


	K2_E Project Manager.pdf
	2 Project Management
	2.1 Project Organisation
	2.1.1 Opening a Project
	2.1.2 Creating a new Project
	2.1.3 How projects are stored on the PC
	2.1.4 Backup and restore of a Project or Device

	2.2 The Project Tree
	2.2.1 Project folder
	2.2.2 Common Files folder
	2.2.3 Libraries folder
	2.2.4 Device folder
	2.2.5 Online Settings
	2.2.6 Connecting the PC to the PCD
	2.2.7 Device Configurator
	2.2.8 Build Options
	2.2.9 Program Files folder
	2.2.10 File Types

	2.3 Building the Program
	2.3.1 Build Changed Files, Rebuild All Files, Rebuild All Devices

	2.4 Messages Window
	2.5  Downloading the Program into the PCD
	2.5.1 Download Program

	2.6 Commands for All Devices
	2.7 Self Downloading Files
	2.7.1 Creating a self-downloading file
	2.7.2 Downloading a self-downloading file

	2.8 Flash Backup Memory
	2.8.1 Saving the executable program
	2.8.2 Saving the program's source code
	2.8.3 Backing up data to a file

	2.9 The View Windows
	2.9.1 Block Call Structure
	2.9.2  Global Symbols and Data List Views
	2.9.3 Cross-Reference List

	2.10  The Online Configurator
	2.10.1 Device Configurator
	2.10.2 PCD History
	2.10.3 Setting the PCD's Clock
	2.10.4 Saving program and data from RAM
	2.10.5 Create Diagnostic File
	2.10.6 Firmware Downloader


	Online
	Configurator

	K3_E Device Configurator.pdf
	3 Device configurator
	3.1 Scanning the Device parameters to the configurator
	3.2 The main view on the configurator
	3.3 Loading the configurator parameters to the Device
	3.4 Device properties
	3.4.1 Memory
	3.4.2 Password
	3.4.3 S-Bus
	3.4.4 Power Supply.

	3.5 Serial S-Bus communication properties
	3.5.1 Full protocol (PGU) Serial-S-Bus (PGU slave for series line)
	3.5.2 Public Line S-Bus Modem (PGU slave for a modem line)
	3.5.3 Serial S-Bus Master Gateway.
	3.5.4 S-Bus Mode and Timings

	3.6 Profi S-Bus communication properties
	3.6.1 Profi-S-Bus (slave)
	3.6.2 Profi S-Bus Master Gateway.
	3.6.3 Bus Parameters: user defined

	3.7 Ether-S-Bus communication properties
	3.7.1 Ether-S-Bus (slave)
	3.7.2 Profi S-Bus Master Gateway.

	3.8 On board slots properties, configuration of the media mapping
	3.8.1 Device properties, necessary configurations.
	3.8.2 Onboard slots, configuration of the E/S modules.
	3.8.3 Properties of binary I/O.
	3.8.4 Properties of analogue I/O.

	3.9 Printing of labels for the I/O modules.
	3.10 Extension of the Device Configurator by means of new devices and I/O modules


	K4_E PCD Ressources.pdf
	PCD Data
	4.1 Hardware Data
	4.1.1 Digital inputs and outputs
	4.1.2 Date and time
	4.1.3 Interrupt inputs

	4.2 Internal Data
	4.2.1 Flags
	4.2.2 Registers
	4.2.3 Constants
	4.2.4 Timers and counters
	4.2.5 Texts and data blocks



	K5_E Symbol_Editor.pdf
	5  Symbol Editor
	5.1 Elements of a symbol
	5.1.1 Symbol Name
	5.1.2 Syntax for the name of a symbol
	5.1.3 Type
	5.1.4 Address/Value
	5.1.5  Comment
	5.1.6 Actual Address
	5.1.7 Tags
	5.1.8 Scope

	5.2 Editing the symbols
	5.2.1 Absolute addressing
	5.2.2 Symbolic addressing
	5.2.3 Dynamic addressing
	5.2.4  Symbol Editor, quick editing of symbols
	5.2.5 IL or Fupla editor, quick editing of symbols
	5.2.6 Symbol groups
	5.2.7  Symbol tables
	5.2.8 All Publics, System, … views
	5.2.9  Visibility of symbols, Local, Public and External scope
	5.2.10  Searching for symbols
	5.2.11 Using a symbol in the program

	5.3 Initialising the symbols
	5.3.1 Initialising on cold restart
	5.3.2 Initialising on downloading the program
	5.3.3  Initialising texts and DBs

	5.4 Predefined symbols
	5.4.1 Symbols predefined by FBoxes
	5.4.2  System symbols

	5.5  Cross-references of symbols
	5.6 Sharing symbols between the program files
	5.6.1 ‘.sy5’ symbol files
	5.6.2 ‘.xls’ symbol files
	5.6.3 ‘.rxp’ symbol files
	5.6.4 Defining symbols or programs in a common file

	5.7 Importing/exporting symbols
	5.7.1 Importing & merging symbols
	5.7.2 Exporting symbols
	5.7.3 Importing ‘EQU’ declarations
	5.7.4 Renumbering Addresses



	K6_E Fupla Editor.pdf
	6 Programming with Fupla
	6.1 Preparing a Fupla project
	6.2 Layout of the Fupla window
	6.3  Editing connectors
	6.3.1 Placing connectors
	6.3.2 Editing a symbol inside connector
	6.3.3 Quick way to place a symbol and its connector
	6.3.4 Drag, Copy/Paste, Delete symbol
	6.3.5 Copy/Paste, Delete connector
	6.3.6  Stretch connectors
	6.3.7 Move connector vertically

	6.4 Placing a Fupla function box
	6.4.1  FBox selector
	6.4.2 Adding an FBox
	6.4.3 Edit stretchable FBox
	6.4.4 Edit logical inversion
	6.4.5 Triggering on a rising edge
	6.4.6 Comments
	6.4.7 FBox Help

	6.5 Links between FBoxes and connectors
	6.5.1 Link by shifting FBox
	6.5.2 Link with automatic routing
	6.5.3 Multiple link with automatic routing
	6.5.4 Link all inputs/outputs on an FBox to connectors
	6.5.5 Delete lines, FBoxes, connectors or symbols
	6.5.6 Move FBox/connector vertically without undoing links
	6.5.7 Insert FBox without undoing link
	6.5.8 Rules to follow

	6.6 Editing Fupla pages
	6.6.1 Insert page
	6.6.2 Delete a page
	6.6.3 Page navigation
	6.6.4 Page documentation
	6.6.5 Processing of program by the PCD

	6.7 Copy and paste
	6.7.1 Copy/paste part of a program
	6.7.2 Copy and paste symbols

	6.8  Templates
	6.8.1 Creating a template
	6.8.2 Importing templates

	6.9 Editing your first Fupla program
	6.9.1 Objectives
	6.9.2 Solution
	6.9.3 Programming

	6.10 Building the program
	6.11 Downloading the program into the PCD
	6.12 Finding and correcting errors (Debugging)
	6.12.1 Go On/Offline – Run – Stop - Step-by-step
	6.12.2  Breakpoints
	6.12.3 Display symbols or addresses
	6.12.4 Display symbol state with Fupla
	6.12.5  Editing symbols online
	6.12.6 Display/edit symbol state with Watch window
	6.12.7 Setting the PCD's clock

	6.13 Adjust parameters
	6.13.1 Initialization of HEAVAC FBoxes
	6.13.2 HEAVAC FBox with adjust parameters
	6.13.3 Mini HEAVAC application
	6.13.4 Modifying Adjust Parameters when online
	6.13.5 Restoring the original parameters from the Fupla file
	6.13.6 Saving the online parameters into the Fupla file
	6.13.7 Defining symbol names for Adjust Parameters
	6.13.8 Defining Adjust Parameter addresses

	6.14 Commissioning an analogue module
	6.14.1 Acquisition of an analogue measurements
	6.14.2 Example for PCD2.W340 analogue input modules
	6.14.3  Example for PCD2.W610 analogue output modules



	K7_E Program structures.pdf
	7 Program structure
	7.1 Cyclic Organisation Blocks  (COB 0 to 31)
	7.1.1 Definition
	7.1.2  Creating a block
	7.1.3 Example

	7.2 Program Blocks (PB) and Function Blocks (FB)
	7.2.1 Definition
	7.2.2 Program Block with conditional call
	7.2.3 Function Block with parameters

	7.3 View Block Call Structure
	7.4 Exception Organization Blocks (XOB)
	7.4.1 Definition
	7.4.2 XOB numbers and descriptions
	7.4.3 Use of XOBs
	Diagnose of errors
	Maintenance of your PLC.
	Monitoring special events or very fast reactions to external signals.

	7.4.4 History
	7.4.5 Description of XOBs

	7.5 Sequential Blocks (SB 0 to 96)
	7.6 Summary


	K8_E Graftec Editor.pdf
	8  Graftec Programming
	8.1 Sequential Blocks (SB 0 to 95)
	8.2  Structure of a Sequential Block (SB)
	8.2.1 Rules for connecting Steps and Transitions
	8.2.2 Transitions (TR 0..5999)
	8.2.3 Steps (ST 0..5999)
	8.2.4  Properties of steps and transitions
	8.2.5 Typical Graftec sequences

	8.3 Creating a Graftec project
	8.3.1 Create a new project
	8.3.2 Add a Fupla or IL file
	8.3.3 Calling the SB from a COB
	8.3.4 Add a Graftec file
	8.3.5  Page Navigator, adding an SB

	8.4  Editing the Graftec structure
	8.4.1 Editing a simple sequence
	8.4.2 Creating a loop
	8.4.3 Smart cursor option
	8.4.4 Creating an alternate branch (OU)
	8.4.5 Connecting alternate branches
	8.4.6 Creating a simultaneous branch (ET)
	8.4.7 Connecting simultaneous branches
	8.4.8 Adding a comment
	8.4.9 Inserting a sequence
	8.4.10 Deleting a sequence
	8.4.11  Copy/pasting a sequence

	8.5 Writing a first sequential block
	8.5.1 Creating the Graftec structure
	8.5.2 Choosing the editor: IL or Fupla (S-Edit or S-Fup)
	8.5.3 Editing the symbols
	8.5.4 Programming an initial step, loading a counter
	8.5.5 Programming a transition, waiting for the start signal
	8.5.6 Programming a step, turning on an output and starting a timer
	8.5.7 Waiting for a timer
	8.5.8 Turning off an output when a timer reaches 0
	8.5.9 Decrementing a counter
	8.5.10 Alternate branching

	8.6 Building and debugging the program
	8.6.1 Messages window
	8.6.2 Online tools

	8.7 Grouping a Graftec program into pages
	8.7.1 Rules for editing pages
	8.7.2  Creating a new page
	8.7.3 Opening pages
	8.7.4 Expanding a page
	8.7.5 Block Navigator

	8.8 Graftec templates
	8.1.1 Creating a template
	8.1.2 Importing templates



	K9_E IL Editor.pdf
	9 Programming in IL (Instruction List)
	9.1 Preparing an IL project
	9.1.1 Create new project
	9.1.2 Create new IL file

	9.2 Layout of the IL Editor window
	9.2.1 Editing a line of code
	9.2.2 Automatic formatting of instruction lines
	9.2.3 Creating an organization block
	9.2.4 Sequence of processing for instructions and blocks
	9.2.5 Rules to follow when editing blocks

	9.3  Introduction to the PCD instruction set
	9.3.1 The accumulator (ACCU)
	9.3.2 Binary instructions
	9.3.3 Edge detection
	9.3.4  Status flags
	9.3.5  Instructions for timers
	9.3.6  Instructions for counters
	9.3.7 Accumulator-dependent instructions
	9.3.8  Word instructions for integer arithmetic
	9.3.9 Word instructions for floating-point arithmetic
	9.3.10 Conversion of integer and floating-point registers
	9.3.11 Index register
	9.3.12 Program jumps

	9.4  Editing a first application program
	9.5 Building the program
	9.6 Load program into PCD
	9.7 Debugging a program
	9.7.1 Go On/Offline, Run and Stop
	9.7.2  Step-by-step mode
	9.7.3 Breakpoints
	9.7.4 Online modification of the program and data
	9.7.5 Viewing and modifying symbol states with the Watch Window

	9.8  Commissioning an analogue module
	9.8.1 Example for PCD2.W340 analogue input modules
	9.8.2  Example for PCD2.W610 analogue output modules



	K9_E IL Editor.pdf
	9 Programming in IL (Instruction List)
	9.1 Preparing an IL project
	9.1.1 Create new project
	9.1.2 Create new IL file

	9.2 Layout of the IL Editor window
	9.2.1 Editing a line of code
	9.2.2 Automatic formatting of instruction lines
	9.2.3 Creating an organization block
	9.2.4 Sequence of processing for instructions and blocks
	9.2.5 Rules to follow when editing blocks

	9.3  Introduction to the PCD instruction set
	9.3.1 The accumulator (ACCU)
	9.3.2 Binary instructions
	9.3.3 Edge detection
	9.3.4  Status flags
	9.3.5  Instructions for timers
	9.3.6  Instructions for counters
	9.3.7 Accumulator-dependent instructions
	9.3.8  Word instructions for integer arithmetic
	9.3.9 Word instructions for floating-point arithmetic
	9.3.10 Conversion of integer and floating-point registers
	9.3.11 Index register
	9.3.12 Program jumps

	9.4  Editing a first application program
	9.5 Building the program
	9.6 Load program into PCD
	9.7 Debugging a program
	9.7.1 Go On/Offline, Run and Stop
	9.7.2  Step-by-step mode
	9.7.3 Breakpoints
	9.7.4 Online modification of the program and data
	9.7.5 Viewing and modifying symbol states with the Watch Window

	9.8  Commissioning an analogue module
	9.8.1 Example for PCD2.W340 analogue input modules
	9.8.2  Example for PCD2.W610 analogue output modules



	K10_E Additional Tools.pdf
	10. Additional tools
	10.1 Data transfer utility
	10.1.1 Using data transfer
	10.1.2 Start up Data Transfer
	10.1.3 Save data with Quick Data Upload
	10.1.4 Restore data
	10.1.5 Save data with help of script file
	10.1.6 Restore data with help of script file
	10.1.7 Upload options
	10.1.8 Save data with command line mode

	10.2 Watch window
	10.2.1 Open the Watch Window
	10.2.2 Add data to a Watch Window
	10.2.3 Online display of data
	10.2.4 Online modification of data
	10.2.5 Display format
	10.2.6 Watch Window  and applications with several  devices
	10.2.7  Trend Function
	10.2.8  Log Function
	10.2.9 Symbols with a small and big magnitude on the same trend
	10.2.10 Trend with several binary symbols

	10.3 Online Configurator
	10.3.1 Adjust the PCD's clock
	10.3.2 PCD History

	10.4 Updating firmware. (Firmware Downloader)
	10.5  User menus


	K11_E Saia Networks.pdf
	11 Saia PCD Networks (S-Net)
	11.1 Summary
	11.2 Choice of network
	11.2.1 Supported services
	11.2.2 Design features
	11.2.2.1 Communications speed
	11.2.2.2 Maximum distance
	11.2.2.3 Communications protocol
	11.2.2.4 Data exchange master-slave or multi-master mode
	11.2.2.5 Application domains




	K12_E Profi-S-Bus.pdf
	12 Profi-S-Bus
	12.1 Profi-S-Bus network Example
	12.2 Examples of the Data Exchange in Profi-S-Bus
	12.3 The PG5 Project
	12.4 Device Configurator parameters
	12.4.1 Define the device type
	12.4.2 Define S-Bus station number in the Network
	12.4.3 Define communication channel of the Profi-S-Bus
	12.4.4 Download  the Device Configurator parameters in  the device

	12.5 Fupla Program
	12.5.1 Assign the channel using SASI Fbox
	12.5.2 Assign Master channel
	12.5.3 Assign slave channel
	12.5.4 Principles of data exchange in a multi-master network
	12.5.5 Data Exchange between master and slave stations
	12.5.6 Diagnostics

	12.6 IL programm
	12.6.1 Assign master Channel using SASI instruction
	12.6.2 Assign slave channel
	12.6.3 Principles of data exchange in a multi-master network
	12.6.4 Data Exchange between master and slave stations
	12.6.5 Diagnostics

	12.7 Gateway Function
	12.7.1 Application
	12.7.2 Configuration of the Gateway PGU function
	12.7.3 Configuration of the Gateway Slave port supplementary slave
	12.7.4 Communication Timing

	12.8 Other References


	K13_E Ether-S-Bus.pdf
	13 Ether-S-Bus
	13.1 Ether-S-Bus network Example
	13.2 Examples of the Data Exchange in Ether-S-Bus
	13.3 The PG5 Project
	13.4 Device Configurator parameters
	13.4.1 Define the device type
	13.4.2 Define S-Bus station number in the Network
	13.4.3 Define communication channel of the Ether-S-Bus
	13.4.4 Download  the Device Configurator parameters in  the device

	13.5 Fupla Program
	13.5.1 Assign the channel using SASI Fbox
	13.5.2 Assign Master channel
	13.5.3 Assign slave channel
	13.5.4 Principles of data exchange in a multi-master network
	13.5.5 Data Exchange between master and slave stations
	13.5.6 Diagnostics

	13.6 IL program
	13.6.1 Assign the master channel using SASI instruction
	13.6.2 Assign slave channel
	13.6.3 Principles of data exchange in a multi-master network
	13.6.4 Data Exchange between master and slave stations
	13.6.5 Diagnostics

	13.7 Gateway Function
	13.7.1 Application
	13.7.2 Configuration of the Gateway PGU function
	13.7.3 Configuration of the Gateway Slave port supplementary slave
	13.7.4 Communication Timing

	13.8 Other References


	K15_E Profi-S-IO.pdf
	15 Profi-S-IO
	15.1 Profi-S-IO network example
	15.2 General functionality
	15.3 PG5 project
	15.4 Defining stations on the network
	15.5 Configuring the master station
	15.6 Configuring slave stations
	15.6.1 Configuring Input /Output modules
	15.6.2 Configuring symbol names for remote data
	15.6.3 Configuring I/O parameters

	15.7 Using network symbols in Fupla or IL programs
	15.8 Further information


	K10_E Additional Tools.pdf
	10. Additional tools
	10.1 Data transfer utility
	10.1.1 Using data transfer
	10.1.2 Start up Data Transfer
	10.1.3 Save data with Quick Data Upload
	10.1.4 Restore data
	10.1.5 Save data with help of script file
	10.1.6 Restore data with help of script file
	10.1.7 Upload options
	10.1.8 Save data with command line mode

	10.2 Watch window
	10.2.1 Open the Watch Window
	10.2.2 Add data to a Watch Window
	10.2.3 Online display of data
	10.2.4 Online modification of data
	10.2.5 Display format
	10.2.6 Watch Window  and applications with several  devices
	10.2.7  Trend Function
	10.2.8  Log Function
	10.2.9 Symbols with a small and big magnitude on the same trend
	10.2.10 Trend with several binary symbols

	10.3 Online Configurator
	10.3.1 Adjust the PCD's clock
	10.3.2 PCD History

	10.4 Updating firmware. (Firmware Downloader)
	10.5  User menus


	K10_E Additional Tools.pdf
	10. Additional tools
	10.1 Data transfer utility
	10.1.1 Using data transfer
	10.1.2 Start up Data Transfer
	10.1.3 Save data with Quick Data Upload
	10.1.4 Restore data
	10.1.5 Save data with help of script file
	10.1.6 Restore data with help of script file
	10.1.7 Upload options
	10.1.8 Save data with command line mode

	10.2 Watch window
	10.2.1 Open the Watch Window
	10.2.2 Add data to a Watch Window
	10.2.3 Online display of data
	10.2.4 Online modification of data
	10.2.5 Display format
	10.2.6 Watch Window  and applications with several  devices
	10.2.7  Trend Function
	10.2.8  Log Function
	10.2.9 Symbols with a small and big magnitude on the same trend
	10.2.10 Trend with several binary symbols

	10.3 Online Configurator
	10.3.1 Adjust the PCD's clock
	10.3.2 PCD History

	10.4 Updating firmware. (Firmware Downloader)
	10.5  User menus


	K11_E Saia Networks.pdf
	11 Saia PCD Networks (S-Net)
	11.1 Summary
	11.2 Choice of network
	11.2.1 Supported services
	11.2.2 Design features
	11.2.2.1 Communications speed
	11.2.2.2 Maximum distance
	11.2.2.3 Communications protocol
	11.2.2.4 Data exchange master-slave or multi-master mode
	11.2.2.5 Application domains




	K12_E Profi-S-Bus.pdf
	12 Profi-S-Bus
	12.1 Profi-S-Bus network Example
	12.2 Examples of the Data Exchange in Profi-S-Bus
	12.3 The PG5 Project
	12.4 Device Configurator parameters
	12.4.1 Define the device type
	12.4.2 Define S-Bus station number in the Network
	12.4.3 Define communication channel of the Profi-S-Bus
	12.4.4 Download  the Device Configurator parameters in  the device

	12.5 Fupla Program
	12.5.1 Assign the channel using SASI Fbox
	12.5.2 Assign Master channel
	12.5.3 Assign slave channel
	12.5.4 Principles of data exchange in a multi-master network
	12.5.5 Data Exchange between master and slave stations
	12.5.6 Diagnostics

	12.6 IL programm
	12.6.1 Assign master Channel using SASI instruction
	12.6.2 Assign slave channel
	12.6.3 Principles of data exchange in a multi-master network
	12.6.4 Data Exchange between master and slave stations
	12.6.5 Diagnostics

	12.7 Gateway Function
	12.7.1 Application
	12.7.2 Configuration of the Gateway PGU function
	12.7.3 Configuration of the Gateway Slave port supplementary slave
	12.7.4 Communication Timing

	12.8 Other References


	K13_E Ether-S-Bus.pdf
	13 Ether-S-Bus
	13.1 Ether-S-Bus network Example
	13.2 Examples of the Data Exchange in Ether-S-Bus
	13.3 The PG5 Project
	13.4 Device Configurator parameters
	13.4.1 Define the device type
	13.4.2 Define S-Bus station number in the Network
	13.4.3 Define communication channel of the Ether-S-Bus
	13.4.4 Download  the Device Configurator parameters in  the device

	13.5 Fupla Program
	13.5.1 Assign the channel using SASI Fbox
	13.5.2 Assign Master channel
	13.5.3 Assign slave channel
	13.5.4 Principles of data exchange in a multi-master network
	13.5.5 Data Exchange between master and slave stations
	13.5.6 Diagnostics

	13.6 IL program
	13.6.1 Assign the master channel using SASI instruction
	13.6.2 Assign slave channel
	13.6.3 Principles of data exchange in a multi-master network
	13.6.4 Data Exchange between master and slave stations
	13.6.5 Diagnostics

	13.7 Gateway Function
	13.7.1 Application
	13.7.2 Configuration of the Gateway PGU function
	13.7.3 Configuration of the Gateway Slave port supplementary slave
	13.7.4 Communication Timing

	13.8 Other References


	K14_E Profi-S-IO.pdf
	14 Profi-S-IO
	14.1 Profi-S-IO network example
	14.2 General functionality
	14.3 PG5 project
	14.4 Defining stations on the network
	14.5 Configuring the master station
	14.6 Configuring slave stations
	14.6.1 Configuring Input /Output modules
	14.6.2 Configuring symbol names for remote data
	14.6.3 Configuring I/O parameters

	14.7 Using network symbols in Fupla or IL programs
	14.8 Further information





