Technical Note

Inverse Square Law - Flame

Purpose:

Applying the Inverse Square Law to Flame Detection Applications

Inverse Square Law - Overview

Definition of the Inverse Square Law:
The principle in physics that the effect of certain forces on an object varies by the inverse square of the distance between the object and the source of the force. The magnitude of light, sound, and gravity obey this law, as do other quantities. For example, an object placed three feet away from a light source will receive only one ninth ($1 / 3^{2}$, the inverse of 3 squared) as much illumination as an object placed one foot from the light.
inverse-square law. (n.d.). The American Heritage ${ }^{\circledR}$ Science Dictionary. Retrieved January 8, 2018 from Dictionary.com website http://www.dictionary.com/browse/inverse-square--law

The application is much the same for Electro-Optical Flame Detectors, in that the 'light source' is a Fire and the 'object' is a Flame Detector. However, since fire is a random and chaotic phenomenon of combustion, and not a constant steady source, the application of the inverse square law is an approximation, even though the formula for its calculation is precise.

Graphic view:

Figure 1

Technical Note

The topmost Flame Detector in Figure 1 will alarm to the $1^{\text {st }}$ Fire at a distance of X. The area (or size) of the $1^{\text {st }}$ Fire is Y^{2}. We need to understand the distance coefficient to calculate the new fire sizes for the other cases. The distance coefficient is new distance divided by the original or reference distance. The reference distance in the Figure 1 is X and the new distances are 2 X and 3 X , respectively. In the middle case $2 \mathrm{X} \div \mathrm{X}=$ 2 , so the distance coefficient for the second fire is 2 . We multiply the sides of the pan of the original fire by this distance coefficient to obtain our new fire size (the product of 2 Y and 2 Y is $4 \mathrm{Y}^{2}$). We calculate the third case using the same method: $3 X \div X=3$, so the distance coefficient for the third fire is 3 . We multiply the sides of the pan of the original fire by this distance coefficient to obtain our new fire size (the product of $3 Y$ and $3 Y$ is $9 Y^{2}$).

The Inverse Square Law for magnitude of light (radiant energy from a Fire) is typically expressed using a square pan Fire, which is optimal for fuels that are in a liquid state at ambient temperatures.

This is fine for square pan Fires. What about other Fires shapes?

For non-square rectangular pan fires, apply the distance coefficient to both non-equal sides of the rectangular pan.

EXAMPLE:
Fire Size $=2 \mathrm{ft} . \times 3 \mathrm{ft}$.
Detection Distance $=40 \mathrm{ft}$.
We want to see this fire at 80 feet.
The distance coefficient is $80 \div 40$ or 2
The new fire size will need to be 4 ft . by 6 ft .

Honeywell

Technical Note

Sometimes, fires from liquid flammable fuels are tested using a round pan instead of a square or a rectangular pan. For round pan fires, apply the distance coefficient to the diameter of the pan.

EXAMPLE:

Fire Size $=4$ inch diameter
Detection Distance $=10 \mathrm{ft}$.
We want to see this fire at 30 feet.
The distance coefficient is $30 \div 10$ or 3
The new pan diameter will need to be 12 inches.

Figure 3

12 inch diameter

Technical Note

For a Plume Fire, such as with Silane, Hydrogen, Methane, and other fuels that are in a gaseous state at ambient temperatures, the application of the distance coefficient is applied differently. Gaseous Fires that Honeywell defines are typically $3 / 8$ inch width by 32 inches high or in some cases 48 inches high. Usually, the new Plume Fire will need to have the same width. In other words, the new Plume fire will need to have a $3 / 8$ inch width also, and only the fire height will change. To accomplish this, the square of the distance coefficient should be applied to the Fire Height.

EXAMPLE:

Fire Size $=3 / 8$ inch X 32 inches
Detection Distance $=50 \mathrm{ft}$.
We want to see this fire at 75 feet.
The distance coefficient is $75 \div 50$ or 1.5
The new fire height will need to be 32 inches $\mathrm{X}\left(1.5^{2}\right)$ or 72 inches.

Figure 4

One of the problems with Plume Fires is that the flame shape is irregular and has a rapid expanse near the bottom, tapering up slowly as the flame reaches the peak of its height (see Figure 5), and is therefore not exactly $3 / 8 \times 32$ or $3 / 8 \times 48$.

Figure 5

Technical Note

Conversions

We may want to convert one fire shape to the equivalent of another fire shape, to provide an accurate comparison. One manufacturer may use may use a square pan fire and another a round pan fire, for example. Here are some steps to convert the Fire Shapes previously discussed in this document to a square pan fire, and vice versa.

Square to other fire shapes:

1. Calculate the area of a square pan fire by squaring the length of a side.
2. Divide the area of the square pan fire by:
a. For rectangular pan fires, divide by a given side of the rectangular pan to find the length of the other side of the rectangular pan.
b. For round pan fires, divide by π (approximately 3.141592654); take the square root of this result and multiply by two (2) to obtain the approximate diameter of an equivalent round pan fire.
c. For plume fires, divide by $3 / 8$ or 0.375 to obtain the approximate height of an equivalent plume fire.

Rectangle to other fire shapes:

1. Calculate the area by multiplying two non-equal sides of a rectangular pan fire.
2. Divide the area of the rectangular pan fire by:
a. For square pan fires, do not divide, take the square root of the rectangular pan fire area to determine the length of each side of an equivalent square pan fire.
b. For round pan fires, divide by π (approximately 3.141592654); take the square root of this result and multiply by two (2) to obtain the approximate diameter of an equivalent round pan fire.
c. For plume fires, divide by $3 / 8$ or 0.375 to obtain the approximate height of an equivalent plume fire.

Round to other fire shapes:

1. Calculate the approximate area of a round pan fire using πr^{2} to calculate, where ' π ' is approximately 3.141592654 and ' r ' is the radius of the pan.
2. Divide the area of the round pan fire by:
a. For square pan fires, do not divide, take the square root of the round pan fire area to determine the approximate length of each side of an equivalent square pan fire.
b. For rectangular pan fires, divide by a given side of the rectangular pan to find the approximate length of the other side of the rectangular pan.
c. For plume fires, divide by $3 / 8$ or 0.375 to obtain the approximate height of an equivalent plume fire.

Technical Note

Plume to other fire shapes:

1. Calculate the approximate area of a plume fire by multiply $3 / 8$ or 0.375 by the height of a plume fire.
2. Divide the approximate area of a plume fire by:
a. For square pan fires, do not divide, take the square root of the round pan fire area to determine the approximate length of each side of an equivalent square pan fire.
b. For rectangular pan fires, divide by a given side of the rectangular pan to find the approximate length of the other side of the rectangular pan.
c. For round pan fires, divide by π (approximately 3.141592654); take the square root of this result and multiply by two (2) to obtain the approximate diameter of an equivalent round pan fire.

There are many other factors that will affect the actual detection distance. Here is a partial list of factors:

- Sunny, cloudy, partially cloudy
- Position of the Sun and the Detector facing
- Fog, mist, steam, rain
- Aspirated dirt, dust, and other debris
- Cleanliness of the optics
- Cleanliness of the application
- Reflected energy

Nevertheless, applying the inverse square law to a pan fire or a plume fire will always yield an approximate result.

Technical Note

Find out more:
www.honeywellanalytics.com
www.raesystems.com
Contact Honeywell Analytics:
Europe, Middle East, Africa
Life Safety Distribution GmbH
Javastrasse 2
8604 Hegnau
Switzerland
Tel: +41 (0)44 9434300
Fax: +41 (0)44943 4398
gasdetection@honeywell.com
Customer Service:
Tel: 0080033322244 (Freephone number)
Tel: +41449434380 (Alternative number)
Fax: 0080033322255
Middle East Tel: +971 44505800 (Fixed Gas Detection) Middle East Tel: +97144505852 (Portable Gas Detection)

Americas
Honeywell Analytics Distribution Inc.
405 Barclay Blvd.
Lincolnshire, IL 60069
USA
Tel: +1 8479558200
Toll free: +1800538 0363
Fax: +1 8479558210
detectgas@honeywell.com
RAE Systems by Honeywell
Phone: 408.952.8200
Toll Free: 1.888.723.4800
Fax: 408.952.8480

Asia Pacific
Honeywell Industrial Safety
7F SangAm IT Tower,
434, Worldcupbuk-ro, Mapo-gu,
Seoul 03922,
Korea
Tel: +82 (0) 269090300
Fax: +82 (0) 220250328
India Tel: +91 1244752700
China Tel: +86 10588587883000
analytics.ap@honeywell.com
Technical Services
EMEA: HAexpert@honeywell.com
US: ha.us.service@honeywell.com AP: ha.ap.service@honeywell.com

Technical Services
ha.us.service@honeywell.com

