’ntermeﬁ -

Fingerprint

Developer’s Guide

Intermec Technologies Corporation

Worldwide Headquarters
6001 36th Ave.W.
Everett, WA 98203

US.A.

www.intermec.com

The information contained herein is provided solely for the purpose of allowing customers to operate and service
Intermec-manufactured equipment and is not to be released, reproduced, or used for any other purpose without
written permission of Intermec Technologies Corporation.

Information and specifications contained in this document are subject to change without prior notice and do not
represent a commitment on the part of Intermec Technologies Corporation.

© 2012 by Intermec Technologies Corporation. All rights reserved.

The word Intermec, the Intermec logo, Norand, ArciTech, Beverage Routebook, CrossBar, dcBrowser,
Duratherm, EasyADC, EasyCoder, EasySet, Fingerprint, i-gistics, INCA (under license), Intellitag, Intellitag Gen2,
JANUS, LabelShop, MobileLAN, Picolink, Ready-to-Work, RoutePower, Sabre, ScanPlus, ShopScan, Smart
Mobile Computing, SmartSystems, TE 2000, Trakker Antares, and Vista Powered are either trademarks or
registered trademarks of Intermec Technologies Corporation.

There are U.S. and foreign patents as well as U.S. and foreign patents pending.

ii Fingerprint Developer’s Guide

Contents

Contents

Before You Begin oo xi
Safety Information. i xi

Global Services and Support xi

Who Should Read This Manual xil
Related DOCUMENES oo xii

1 Introductionto Fingerprint. 1
What Is FINGEerPIine?.ttt ettt e e e e e 2
Learning the Structure of Fingerprint Commands. i 2
Fingerprint Operating Modes i 3
Sending Fingerprint Commands to the Printer. o oL 3
2 Understanding Fingerprint Syntax....................... ... 5
Learning FINGerprint SYNEaX.ttt i i 6
About Keywords, Statements,and Lines. 6

About FUNCLIONS.t 7

About Constants, Variables, and Expressions............. ..., 8

ADOUL OPerators.ttt e 9

ADOUL DEVICES. . .. oottt 11
About Immediate Mode. 12
Sending Command Strings in Immediate Mode L 12

About Programming Mode. 13
Using Line Numbers 13
Programming Without Line Numbers oo, 14
Sending Programs to the Printer............. 14
Commands for Editing Code...... 15
Using Conditional INStrUCtiONS. ittt 16
Using an IF... THEN...[ELSE] INStructionouuiiuuiiuiiuinnenean... 16

Using an IF... THEN...[ELSE]..END IF InStructioncooiuiiiueanann... 16

About Branching...... 17
Branching to Subroutines 17
Instructions for Conditional Branching................ 18
Unconditional Branching Usinga GOTO Statement...................ooieiue.n... 20
Branching to an Error-Handling Subroutine o oo 21

ADOUL LOOPS . . .ot 22
Using a FOR.INEXT INStructiono.ouuiiiuii i 22

Fingerprint Developer’s Guide ii

Contents

Using a WHILE..WEND Instruction.c.oiuuiiuiiiteiineiainieaan . 23
Structuring Your Program ... 24
Executing the Program. 25

Writing, Executing, and Listing a Short Program 25
Breaking Program EXecUtionottt 26

Using a BREAK Statement........ ...t 26

Using a BREAK...ON or BREAK...OFF Statement oo, 27

Using an ON BREAK ..GOSUB..Statement ..., 27
Saving the Program. 27

Naming the Program........ 28

Protecting the Program. i 28

Saving Without Line Numberso o 28

Making Changes i 29

Making Copies of Programs. 29

Renaminga Program............ .. 29

Creating a Startup Program. i 29

3 Managing Files 31
Using Directories in the Printer File System. o i, 32

Using Path Shortcuts. 32
About File Typeso 33

Commands for Listing Files. o 33

Listing a File With the FILELIST Program. oo .. 33
Commands for Creating and Managing Program Files. 34
Commands for Creating and Managing Data Files 34
Commands for Transferring Text and Binary Files 35

Using the TRANSFER KERMIT Statement................oiuiiiiiiiiiinieanaan.. 35

Using the ZMODEM Protocol 35

Using a TRANSFER STATUS Statement ...t .. 35
Commands for Transferring Files Between Printers, 36

Checking Transferred Files With CHECKSUM 36
Commands for Working With Arrays 36

Specifying Array Dimensions Using DIM.o ... 37

SOFEINE ALTAYS .« .ottt e e e e 37

Splitting String EXPresSSiOnso.uuutantte it i 38

Calculating String Array Checksums. i i 38

4 Managing InputandOutput 39
Preprocessing Input Data i 40
Modifying Character Sets Using a MAP Statement....................cooiiuiinn... 40

iv Fingerprint Developer’s Guide

Contents

Choosing a Character Set with a NASC Statementooooiina.... 41
Converting Input Data. 42
Generating Random Numbers. 43

Calling the RANDOM FUNCHION.ottt 43

Using a RANDOMIZE Statementouuiiiiiiiiiniiiiiiiiiiee .. 43
Setting the Standard IN and OUT Channels............ i, 44
Input Froma Host ... 44
Input From Sequential Files. 45

Reading Data to a Variable With INPUT# o i, 45

Reading a Specific Data Length With INPUTS. oot 46

Reading a Line to a Variable With LINEINPUT# 46

CloseaFile 47

Verify the End of aFile With EOF o 47

Counting Data Blocks with LOCo 47

Determining File Length with LOF o o 47
Input FromaRandom File......... 48

Creatinga Buffer with FIELD i 48

Copying a Specific Field with GET............ i 48

Closinga File 49

Finding the Last Field Read with LOC, 49

Determining File Length with LOF o o 49
Input From the Printer Keypad 49
Controlling ComMmMUNICATIONo\ttt ettt et ettt et et e e 50

Using BUSY or READY Statements.........oouuiiiniiiiiiiiiiiiii .. 50

Using an ON LINE | OFF LINE Statement.ouuuiuauiuiuiininanananan... 51

Controlling Printer Response with VERBON | VERBOFFc.cooviuin... 51
Managing Background Communicationoiuiiuiiiiiiiniieiiianeana.. 51

Background Communication Example.......... oo 52

Retrieving Buffer Status With LOCor LOF...........o o 54

Setting Up RS-422 CommUNICAtIONttt ittt 55
Output to the Standard OUT Channel it 56

Printing Expressions With PRINT i 56

Printing Characters by ASCII Values With PRINTONE.............................. 57
Redirecting Outputtoa File. 58
Output to Sequential Files 58

Using an OPEN Statement.ouuiiiitit i 58

Printing Expressions to a Sequential File With PRINT# 59

Printing Characters by ASCII Values With PRINTONE#. 59

Using a CLOSE Statementuiiuiiii it i 59

Counting Data Blocks and Determining File Length With LOCand LOF............. 59

Fingerprint Developer’s Guide v

Contents

Output to Random Files 60
Opening a File for Random Input or Output With OPEN 60
Creating a Buffer With FIELD....... i 60
Left or Right Justifying Data With LSETand RSET 61
Transferring Data to the Filewith PUT o it 61
Using a CLOSE Statementoouuuinttti it 62
Finding the Last Field Read and Determining File Length With LOCand LOF 62

Output to Communication Channels 62

Output to the Printer Display 63

5 Managing Fonts, Bar Codes,andImages. ... 65

Managing Fonts. 66
About FONt TYPes. . ..o 66
Selecting FONTs 66
Controlling Font Direction, Size, Slant,and Width 66
Adding and Removing Fonts.......... i i 67
Creating and Using Font Aliases. i 67

About Bar Code Symbologies. 67
General Rules for Bar Code Printing oo, 69
Commands for Working With Bar Codes................. 69

Understanding Images and Image Files. o i 70
Standard IMagesottt e 70
Downloading Image Files........... 71
Listing Imageso 71
Removing Images and Image Files........... i 72

6 Designing BarCodeLabels..................l 73

Creating a Layout With Fields 74

Positioning Fields in the Layout i 75
About Units 0Of Measureuiuuiiutitt it 76
About Insertion and Anchor Points........... i i 76
About Print DIreCtionsouuit it 78
Checking the Current POSItIONouiutit e 78
Checking the Size and Positionof aField 79

Creating Single-Line and Multi-Line Text Fields 79
Specifying a Typeface with FONT i 79
Inverting Black and White Printing with NORIMAGE or INVIMAGE. 79
Specifying Text for Printing with PRTXT..........o i 80
Defining Borders With PRBOX......... i i 80
Summary for Text Fields.o 80

Creating Bar Code Fields. 81
Specifying a Bar Code Symbology With BARSET 81
Choosing the Human-Readable Font with BARFONT............................... 82

vi Fingerprint Developer’s Guide

Contents

Specifying Input Datawith PRBAR 82
Summary for Bar Code Fieldso 82
Creating Image Fields. 83
Magnifying Images with MAG 83
Inverting Black and White Printing with NORIMAGE or INVIMAGE. 83
Specifying Images by Filename with PRIMAGE 83
Summary forImage Fields.......... 84
Creating BoXes i 85
Summary for BoXes 85
Creating LiNes 85
Summary for LINes. 86
Additional Printing INSEruCtioNS.oou it 86
Printing Partial Fields With the CLIP ON Command................................ 86
Inverting Intersection Printing With XORMODE........... 86

Using the LAYOUT Command ... 87
About Layout ReqUIrementsoouuiiuuiintiitt i, 88
Creating a Logotype Name File........ i i 91
CreatingaDataFileor Array........ i i 92
Creating an Error Fileor Array 92

Using the Files in a LAYOUT Statement.ouiuuiuiiniiiiieaieaeanen... 93
Creatinga Simple Label. 9§
Handling Errors With ERRHAND.PRG i 99
Renumbering Lines When Merging Files 99
Merging Programsot 99

Using the Print Key 100

7 Controllingthe Printer 101
Using Fingerprint to Control the Printer o i, 102
Controlling Media Feed......... 102
Adjusting Media Feed Distance With TESTFEED 102
Feeding Media With FORMFEED i i, 103
Overriding Start and Stop Adjust Values With LBLCOND......................... 103
Rotating the Platen Roller With CLEANFEED..........., 103
Checking Media Feed Distance With ACTLENt 103
Controlling Printing. 104
Enabling the Automatic Paper Cutter With CUTON.............................. 104
Enabling the Label Taken Sensor With LTS& ON.......... oot 104
Repeating the Last Printing Operation With PRINTFEED......................... 104
Enabling Manual Printing With PRINTKEYON oo, 105
Checking the Transfer Ribbon and Printhead With SYSVAR....................... 105
Handling Faulty Dots With HEAD, SET FAULTY DOT, and BARADJUST 105
Checking Printhead Status With FUNCTEST or FUNCTESTS..................... 106
Reprinting Labels After Interruptions.ot 107

Fingerprint Developer’s Guide vii

Contents

About Batch Printing. 107

Using the Printer Keypad. 109
Branching to Subroutines With KEY...ON and ON KEY..GOSUB.................. 109
Defining Audio Beeps With KEY BEEP. e 110
Entering ASCII Characters With INPUT#, INPUTS$, or LINE INPUT# 110
Remapping the Keypad With KEYBMAPSt 110

Using the Keypad in Immediate Mode o ... 111

Using the Printer Display 112
Customizing the Printer Display o i 112
Controlling the LEDs and Beeper............. ... i i 112
Using an LED ON|OFF | BLINK Statementc.oueueiueuentnuneanenenenn.. 112

Using a BEEP or SOUND Statement.o.uiiiiutiiiin i 113

Setting the Dateand Time 113
Reading the Clockand Calendar o, 113

Using Setup Mode Programmatically i 115
Reading the Current Setup............ .. i 115
Creatinga Setup File 115
Changing the Setup Usinga Setup File........... 115
Changing the Setup Using a Setup Stringo.iiuiiuiiiiniinaneann.n.. 116

Saving the Setup...... 116

Using the SYSVAR System Variable o 116
Checking Hardware and Firmware Versions 118
Checking Immediate Mode and STDIO Status. ..., 118
Restarting the Printer. e 119
About Printer MemOIy. 119
Permanent Memory 119
Temporary MemoOry 120

Other Memory DevICesottt e e 120
Changing the Current DIreCtory.ttt 121
Checking Free MemoOryttt 121
Providing More Free Memoryttt 121
Formatting the Permanent Memoryooii ... 121

Using the Industrial Interface 122
8 ErrorHandling 123
Standard Error Handling 124
Choosing an Error Message Format i i 124
Checking for Programming Errors. 125
Using a TRON|TROFF Statementuuuuuininanananaeiniiiananan .. 125

Using STOP and CONT Statementsuiutiutirintitieieieaaenn.. 125

viii Fingerprint Developer’s Guide

Contents

Specifying BreakpoInts i 125

Commands for Error-Handling Routines. o i 126

Branching to Subroutines With ON ERRORGOTO............... ..o, 126

Checking Error Codeswith ERRand ERL 126

Resuming Execution After Errors. 126

Returning Print Job and Printhead Status with PRSTAT........................... 126

Error Handling Example. 127

Using the ERRHAND.PRG Utility Program. o ... 127

Modifying ERRHAND Variables and Subroutines 128

Complete Listing of ERRHAND.PRG........... ... 129

Standard Error Codes. 132

A CharacterSetsand Keywords ... 133
Introduction to Character SEtsttt 134

About the UTF-8 Character Set........... ..ot 135

Example.o 136

Reserved Keywords and Symbols..... 137

I Index ... 139

Fingerprint Developer’s Guide ix

Contents

X Fingerprint Developer’s Guide

Before You Begin

Before You Begin

This section provides you with safety information, technical support information,
and sources for additional product information.

Safety Information

Caution

£

This section explains how to identify and understand the notes that are in this
document.

A caution alerts you to an operating procedure, practice, condition, or
statement that must be strictly observed to prevent equipment damage or
destruction, or corruption or loss of data.

Note: Notes either provide extra information about a topic or contain special
instructions for handling a particular condition or set of circumstances.

Global Services and Support

Fingerprint Developer’s Guide

Warranty Information
To understand the warranty for your Intermec product, visit the Intermec web site
at www.intermec.com and click Support > Returns and Repairs > Warranty.

Disclaimer of warranties: The sample code included in this document is presented
for reference only. The code does not necessarily represent complete, tested
programs. The code is provided “as is with all faults.” All warranties are expressly
disclaimed, including the implied warranties of merchantability and fitness for a
particular purpose.

Web Support

Visit the Intermec web site at www.intermec.com to download our current manuals
(in PDF).

Visit the Intermec technical knowledge base (Knowledge Central) at
www.intermec.com and click Support > Knowledge Central to review technical
information or to request technical support for your Intermec product.

Send Feedback

Your feedback is crucial to the continual improvement of our documentation. To
provide feedback about this manual, please contact the Intermec Technical
Communications department directly at

Technical Communications@intermec.com.

Telephone Support
In the U.S.A. and Canada, call 1-800-755-5505.

Outside the U.S.A. and Canada, contact your local Intermec representative. To
search for your local representative, from the Intermec web site, click About Us >
Contact Us.

Xi

http://www.intermec.com
http://www.intermec.com
http://www.intermec.com
http://www.intermec.com
http://www.intermec.com
mailto:TechnicalCommunications@intermec.com

Before You Begin

Who Should Read This Manual

This document is written for the person who is responsible for developing
applications in the Intermec Fingerprint programming language. You need to be
familiar with operating, maintaining, and troubleshooting your Intermec printer.
You should also be familiar with networking terms, such as IP address.

Related Documents

Xii

This table contains a list of related Intermec documents and their part numbers.

Document Title

Fingerprint Command Reference Manual

The Intermec web site at www.intermec.com contains our documents (as PDF files)
that you can download for free.

To download documents
1 Visit the Intermec web site at www.intermec.com.

2 Click the Products tab.

3 Using the Products menu, navigate to your product page. For example, to find
the PC23d printer product page, click Printers > Desktop Printers > PC23d.
4 Click the Manuals tab.
If your product does not have its own product page, click Support > Manuals. Use

the Product Category, the Product Family, and Product to find your
documentation.

Fingerprint Developer’s Guide

http://epsfiles.intermec.com/eps_files/eps_man/937-023.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://www.intermec.com
http://www.intermec.com

L

Introduction to Fingerprint

This chapter introduces Intermec Fingerprint and includes these topics:

What Is Fingerprint?
Learning the Structure of Fingerprint Commands
Fingerprint Operating Modes

Sending Fingerprint Commands to the Printer

Chapter 1- Introduction to Fingerprint

What Is Fingerprint?

£

Fingerprint is a programming language you use to create custom label formats and
printer application software. Fingerprint firmware is stored in the printer memory.
Intermec Direct Protocol is a subset of Intermec Fingerprint and is used for
combining variable input data with predefined label layouts.

This guide includes information on using Fingerprint to develop applications for
your Intermec printer. For information on specific Fingerprint or Direct Protocol
commands, see the Fingerprint Command Reference Manual.

To locate the latest Fingerprint firmware for your printer:
1 Visit the Intermec web site at www.intermec.com.
2 Click Support > Downloads.

3 Use the Product Category, the Product Family, and Product to find your
printer.

For more information on printer-specific features, such as setting up the printer,
loading printer firmware, or loading media, see your printer user manual.

Note: Depending on your printer and hardware options, some Fingerprint
commands may not be supported. For more information, see the Fingerprint
Command Reference Manual.

Learning the Structure of Fingerprint Commands

Fingerprint commands are text strings that instruct the printer to perform a variety
of operations, such as downloading data from a host, configuring a bar code label
format, enabling and disabling printer options, or starting a print job and returning
print job status.

Each command is entered as a line. A Fingerprint program can consist of a single
line, or of many lines that include conditional branching and subroutines. Programs
can be stored in the printer memory, loaded from USB mass storage device, or sent
to the printer from a host PC.

For example, a simple Fingerprint program can look like:

10 PRPOS 200,200

20 DIR 3

30 ALIGN 5

40 PRIMAGE "“GLOBE.1”

50 PRINTFEED

RUN

10...50 Specify line numbers for the program.

PRPOS Specifies the insertion point for a printed object using
coordinates.

DIR Specifies the print direction, where 3 indicates that printing

follows the same direction as the print feed.

ALIGN Specifies which anchor point of a printed object is at the
insertion point. The value 5 represents the center anchor point.

Fingerprint Developer’s Guide

http://www.intermec.com
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-023.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-023.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-023.zip

Chapter 1- Introduction to Fingerprint

PRIMAGE Adds an image named “Globe.1” to the print buffer.
PRINTFEED Prints one label.
RUN Runs the program.

For more information on command syntax, see “Understanding Fingerprint
Syntax” on page 5.

Fingerprint Operating Modes

Fingerprint has two operating modes:

* Immediate Mode. In this mode, Fingerprint commands are processed when the
printer receives a carriage return. Generally, commands sent in Immediate Mode
cannot be saved after they are processed.

Use Immediate Mode when you want to test the effects of commands without
saving the commands, such as when you are editing label formats. For more
information, see “About Immediate Mode” on page 12.

* Programming Mode. In this mode, you can save one or more Fingerprint
commands as programs. You can edit, copy, load, list, or merge programs with
other programs. For more information, see “About Programming Mode” on
page 13.

Sending Fingerprint Commands to the Printer

Fingerprint Developer’s Guide

You can send commands to your printer using a serial port and a terminal
emulation program. To send Fingerprint commands to an Intermec printer using a
serial connection, you need:

* acomputer with a screen and keyboard.
* aserial connection to the printer.

* aterminal emulation program, such as HyperTerminal or PuTTY, that can
transmit and receive ASCII characters.

For a complete list of methods to send commands to your printer, see your printer
user’s manual.

Connect to the printer using a communications program

1 Connect the printer to the serial port (COM1) on your desktop PC. For more
information, see the user manual for your printer.

2 Turn on the printer.
3 Onyour desktop PC, start the communications program.

4 Create a connection to the printer using the TCP Port 9100, or the serial port
(COM1) and these parameters:

Baud rate 115200
Data bits 8
Parity None

Chapter 1- Introduction to Fingerprint

Stop bits

1

Flow control None

These serial connection parameters are the default for Fingerprint printers. If
you have changed the communication settings on your printer, use those
settings instead.

5 In the communications program, type:

SETUP WRITE “uartl:”

6 Press Enter. The printer returns its current setup parameters.

MEDIL, MEDIL
MEDIL, MEDIL
MEDIL, MEDIL
MEDIL, MEDIL
MEDIL,PLFER
MEDIL,PLFER
MEDIL,PLFER
MEDIL,PLFER
MEDIL,PLPER
MEDIL,PLFER

Ok

EMULATICN, HODE, DISABLED
EMULATICN, ADJUST,BASE (mwX10),86
EMULATICN, ADJUST, STOP (mmX10), 55
FEEDADJ, STARTADJ, 0

FEEDADJ, STOFADJ, 0

SIZE, XSTART, 0
SIZE,WIDTH, 832

SIZE,LENGTH, 1200

TYPE,LABEL (v GRFS)

TYPE, TRANSFER

TYPE, DIRECT THERMAL,LABEL CONSTANT,SS
TYPE, DIRECT THERMAL,LABEL FACTOR, 40
TYPE, TRANSFER, RIBEON CONSTANT, S0
TYPE, TRANSFER, RIBEON FACTOR,Z5

TYPE, TRANSFER, LABEL OFFSET,0

MEDI&, CONTRAST, +0%

MEDIA, TESTFEED,O0 O O
MEDI&, TESTFEED MODE,FAST
MEDIA, LEN ([SLOU MODE), 0
PRINT DEFS,PRINT SPEED, 100
PRINT DEFS,CLIP DEFAULT,OFF

SETUP WRITE Command Results

Fingerprint Developer’s Guide

Understanding Fingerprint Syntax

This chapter explains the basics of Fingerprint command syntax and
includes these sections:

Learning Fingerprint Syntax
About Devices

About Immediate Mode

About Programming Mode
Sending Programs to the Printer
Commands for Editing Code
Using Conditional Instructions
About Branching

About Loops

Structuring Your Program
Executing the Program
Breaking Program Execution

Breaking Program Execution

Chapter 2 — Understanding Fingerprint Syntax

Learning Fingerprint Syntax

Fingerprint syntax consists of a variety of keywords, parameters, and operators. For
specific command syntax, see the Fingerprint Command Reference Manual.

About Keywords, Statements, and Lines

A Fingerprint command begins with a keyword. Keywords indicate an action, a
printer setting to change, or other related information.

Keyword Examples

Keyword Description
BARSET Specifies a bar code.
COPY Copies a file.

FORMAT DATES Specifies the format to be used for dates (such as YYMMDD).
GOTO Branches unconditionally to a specified line.

STORE IMAGE Sets up parameters for storing an image in printer memory.

In some cases, a space character is a required part of the keyword, as in
LINE_INPUT, where _, indicates a required space character.

Some keywords can be used in an abbreviated form (for example, PT instead of
PRTXT). For more information, see the Fingerprint Command Reference Manual.

A statement is an instruction which specifies an operation. It consists of a keyword,
usually followed by one or several parameters, flags, or input data, which further
define the statement. The next table lists examples of statements.

Statement Examples
Keyword and Statement Description
PRTXT “HELLO” Keyword PRTXT indicates that the following data

(“HELLO?”) is to be placed in a text field.

ON BREAK 1 GOSUB 1000 ON BREAK 1 GOSUB indicates that on the first break
interrupt instruction, the program must branch to a
subroutine at line 1000.

FILES “tmp:”, A Indicates that all files (A) in the “tmp:” directory should
be listed to the printer OUT channel.

Aline in a Fingerprint program may contain up to 32,767 characters and must
always be terminated by a carriage return character (ASCII 13 decimal).

In Programming mode, lines are always numbered, although if you allow
Fingerprint to number the lines automatically, the numbers are not visible until the
program is listed. In Immediate mode or Direct Protocol, numbering is not
required.

6 Fingerprint Developer’s Guide

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-023.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

%

About Functions

Fingerprint Developer’s Guide

Chapter 2 — Understanding Fingerprint Syntax

Note: By default, if you enter a carriage return on the host, the printer echoes back a
Carriage Return + Line Feed (ASCII 13 + 10 decimal). With the setup option “New
Line”, you can restrict the printer to only echo back either a Carriage Return (ASCII
13 decimal) or a Line Feed (ASCII 10 decimal).

If you type the line numbers manually, start with number 10 and increment line
numbers up by 10s (10, 20, 30, 40, etc.). That makes it easier to insert additional
lines (for example 11,12,13...etc.) later.

After typing the line number, use a space character to separate it from the keyword
and statement that follows, as in this example:

100 FONT “Univers”

To send multiple Fingerprint commands on the same line, add a colon (:) between
each command:

100 FONT “Univers” :PRTXT “HELLO”

Note: In Immediate Mode and in Direct Protocol, you can send a complete set of
instructions on one line:

PP100,250:FT“Univers” :PT“"Text 1”:PF ?
You cannot change a line after you send it to the printer. However, you can send a

new line that uses the same line number to replace the existing line, or delete the line
using a DELETE statement.

A function is a statement which returns a value. A function consists of a keyword
combined with values, flags, and/or operators enclosed by parentheses. The next
table lists function examples.

Function Examples

Keyword and Function Description

CHRS (65) Return the readable character for ASCII code 65.

TIMES (“F") Return the current time based on the currently
specified format.

ABS (20*5) Return the absolute value of 20*5.

IF(PRSTAT AND 1)... If the current position of the insertion point +1...

You can insert a function inside a statement, or on a line containing other
instructions. They are often used in connection with conditional statements, as in
this example:

320 IF (PRSTAT AND 1) THEN GOTO 1000

You can add spaces to separate a function from other instructions on the same line,
or to separate a keyword from the rest of the statement.

Chapter 2 — Understanding Fingerprint Syntax

About Constants, Variables, and Expressions

Constants are fixed text or values. There are two kinds of constants:

String constants are sequences of text. Numbers and other characters are
considered part of the sequence and are not processed.

String constants must always be enclosed by double quotation marks (ASCII 34
decimal); for example, “TEST.PRG”. If the string constant is the last part of a
line, the closing quotation mark is optional.

Numeric constants are fixed values. Only decimal integers are allowed (1, 2, 3,
and so on). Values are positive unless preceded by a minus sign (-). Optionally,
you can indicate a positive value using a leading plus sign (+).

Variables also hold data, but their contents can change. You can specify the contents
of a variable or use it as a container for data from Fingerprint operations. There are
two types of variables:

L]

String variables store sequences of text. The maximum size of a string is 64 Kb
(65,535 characters). String variables are indicated by a trailing $ sign, as in these
examples:

AS="INTERMEC”
B$ = TIMES
LET Cs$ = DATES

Numeric variables store only numbers. The maximum value of a numeric
variable is 2,147,483,647. Numeric variables are indicated by a trailing % sign, as
in these examples:

A% = 150

B% = DATEDIFF(“031201",%“031230")

LET C% = 272

A variable name can include letters, numbers, and decimal points. The first
character must always be a letter, and the complete name must not be identical to
any keywords or keyword abbreviations. If part of the variable name is identical to a
keyword or keyword abbreviation, other characters must precede and follow that
part of the variable name or errors will result. The next table lists some examples.

Variable Name Examples

Variable Name Description

LOC$ LOC is a keyword. This will cause an error.

LOCKS$ LOC is not preceded by other characters. This causes an error.
CLOCS$ LOC is not followed by other characters. This causes an error.
CLOCKS$ LOC is preceded by C and followed by K. This variable name is valid.

§ Note: Intermec suggests that all variables and line labels start with a q.

For a list of reserved keywords, see “Reserved Keywords and Symbols” on
page 137.

Fingerprint Developer’s Guide

Chapter 2 — Understanding Fingerprint Syntax

An expression can be either a constant or a variable. There are two types of
expressions:

* String expressions (sometimes expressed as <sexp>) are carriers of
alphanumeric text (string constants and string variables).

* Numeric expressions (sometimes expressed as <nexp>) contain numeric values,
numeric variables, and operators (numeric constants and numeric variables).

About Operators

There are three main types of operators: arithmetic, relational, and logical.

Using Arithmetic Operators

These operators perform calculations as described in the next table.

Arithmetic Operators

Operator Description Example

+ Addition 2+2=4

- Subtraction 4-1=3

® Multiplication 2*3=6

\ Integer division 6\2=3

MOD Modulo arithmetic. Results in an integer value equaling 5SMOD2=1
the remainder of an interger division.

A Exponent 572=25

() Specifies the order of calculation. 7+57°2\8 = 10

(7+572)\8 = 4

Using Relational Operators

These operators check the difference between numeric values as described in the

next table.

Relational Operators

Operator Description

< Less than

<= Less than or equal to

<> Not equal to

= Equal to. Also used as an assignment operator.
> Greater than

>= Greater than or equal to

Relational operators return:
-1 if relation is TRUE.
0 if relation is FALSE.

Fingerprint Developer’s Guide 9

Chapter 2 — Understanding Fingerprint Syntax

The following rules apply:

Arithmetic operations are evaluated before relational operations.
Letters are greater than digits.
Lowercase letters are greater than their uppercase counterparts.

The ASCII code “values” of letters increase alphabetically and the leading and
trailing blanks are significant.

Strings are compared by their corresponding ASCII code value.

Using Logical Operators

Logical operators combine simple logical expressions to form more complicated
logical expressions.

Logical Operators

Operator Description
AND Conjunction
OR Disjunction
XOR Exclusive OR

The logical operators operate bitwise on the arguments as in this example:

1 AND 2 =0

Logical operators can be used to connect relational operators:

A%10 AND A%$<100

The principles are illustrated by the following examples, where A and B are simple
logical expressions.

Examples of Logical Operator AND

A

™ T oA A

B A ANDB
T T
F F
T F
F F

Examples of Logical OperatorXOR

A

| oA

10

B A XORB
T F
F T
T T
F F

Fingerprint Developer’s Guide

About Devices

£

£

Fingerprint Developer’s Guide

Chapter 2 — Understanding Fingerprint Syntax

Examples of Logical Operator OR

A B

T
T F
F T
F F

AORB
T

T
T
F

“Device” is a generic term for communication channels, various parts of the printer
memory, and operator interfaces such as the printer display and keyboard.

Note: Use the DEVICES command to see the list of devices your printer supports.

You may need to specify a device in relation to a Fingerprint command. The next
table lists available device names.

Communication Devices

Name

console:
uartl:
uart2:
uart3:
centronics:
netl:

usbl:

finisher:

Memory Devices

Name

/rom

/c

tmp:

Refers To

Printer display and/or keyboard
Serial communication port

Serial communication port (optional)
Serial communication port (optional)
Parallel communication

EasyLAN communication (optional)
USB communication port

Printer finisher interface

Refers To

Printer firmware (Kernel) and read-only
memory. Also called “rom:”.

Main printer memory. Also called “c:” or

« o

ram

Printer temporary memory.

Can Be OPENed For
Input/Output
Input/Output
Input/Output
Input/Output
Input
Input/Output
Input/Output
Input/Output

Can Be OPENed For
Input (files only)

Input/Output/Random

Input/Output/Append/
Random (files only)

Note: Device names must be lowercase characters only and enclosed by quotation
marks (for example, “/c”). Some devices must have a trailing colon (:), as shown.

Devices are referred to by name with directory commands, such as SAVE, KILL, or
FORMAT, and with OPEN statements.

n

Chapter 2 — Understanding Fingerprint Syntax

In instructions used in connection with communication (for example BREAK,
BUSY/READY, COMSET), the keyboard/display unit and the communication
channels are specified by numbers instead of names:

0 = “console:”

1 =“uartl?”
2 = “uart2?”
3 = “uvart3:”

4 = “centronics:”
S =“netl?”

6 = “usb1.”

About Immediate Mode

In Immediate mode, Fingerprint commands are executed when a carriage return is
received. Most commands can be used in Immediate mode, but cannot be saved
after execution.

Immediate mode is primarily used to:
* Send commands to print a single label that is not reused.

* Send command strings which have been edited and saved as a file on the host
computer. This method resembles “Escape sequences” used in other types of
label printers.

* Send commands that can be used in either Immediate or Programming mode,
such as DELETE, LOAD, MERGE, NEW, REBOOT, or RUN.

Any command line that does not begin with a number, but ends in a carriage return,
is treated as an Immediate mode command.

Sending Command Strings in Immediate Mode

12

You can send command strings in Immediate Mode to print label formats.
Command strings can be sent in a single line:

PRPOS 160,250:DIR 3:ALIGN 4:FONT “Univers” :PRTXT
“Hello” : PRINTFEED °?

Or, with each command on a separate line:

PRPOS 160,250

DIR 3

AN 4

FT “Univers”
PT “Hello”
PF

Note: The last example uses command abbreviations, such as PF for PRINTFEED.
Not all Fingerprint commands can be abbreviated. For more information, see the
Fingerprint Command Reference Manual.

Fingerprint Developer’s Guide

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

£

Chapter 2 — Understanding Fingerprint Syntax

As soon as a carriage return is received, the firmware checks the instructions for
syntax errors. Provided there is a working two-way communication and the
verbosity is on, the printer returns either an error message or “Ok” to the host.

Note: If you need more flexibility than Immediate mode provides, use Intermec
Direct Protocol, since it allows variable input data to be combined with predefined
layouts, handles counters, and includes a flexible error-handler. For more
information, see the Intermec Direct Protocol Programmer’s Reference Manual.

About Programming Mode

Use Programming mode to create programs consisting of one or more program
lines. The complete program can be saved in printer memory and used anytime. The
program is executed when you issue a RUN statement.

Fingerprint assumes input for Programming mode:
* when aline starts with a number.
 after you disable Immediate mode by sending an IMMEDIATE OFF command.

One or several lines make up a program, which can be executed as many times as you
wish. A program can be saved, copied, loaded, listed, merged, and killed. For more
information, see “Commands for Creating and Managing Program Files” on
page 34.

All program lines include line numbers that are either manually entered as the
program is edited, or provided automatically and invisibly by Fingerprint after an
IMMEDIATE ON statement has been executed.

The program is executed in ascending line number order when a RUN statement is
entered on a line, followed by a carriage return. Branching and loops can be created
in the program to make the execution deviate from a strict ascending order.

Often, programs are created as autoexec files that start up automatically when the
printer is switched on, and keep running indefinitely.

Using Line Numbers

Fingerprint Developer’s Guide

You can manually enter line numbers as you write program lines. Intermec
recommends that you start with line number 10 and use an increment of 10 between
lines to allow additional lines to be inserted later if necessary. To make the program
easier to read, you can use a space character between the line number and the
instruction. If you do not use a space, Fingerprint automatically inserts a space
character when the program is listed.

The next example shows a short program with line numbers:

10 PRPOS 200,200

20 DIR 3

30 ALIGN 5

40 PRIMAGE "“GLOBE.1”
50 PRINTFEED

RUN

The last line has no line number, and contains the RUN command plus a carriage
return. This orders the printer to execute all preceding lines in consecutive
ascending order according to their line numbers.

13

http://epsfiles.intermec.com/eps_files/eps_man/1-960597-06%20PRM%20DP%208.60.pdf

Chapter 2 — Understanding Fingerprint Syntax

In this manual, the programming examples will generally have line numbers in
order to make them easier to understand. For more complex programs,
programming without line numbers may be both easier and quicker as described in
the next section.

Programming Without Line Numbers

To write program lines without manually entering line numbers, send the
IMMEDIATE OFF command first. Then you can write the program line by line
without having to type a line number at the start of each line. In other respects, you
can generally work just as when using line numbers.

To make the execution branch to a certain line, such as a GOTO statement, the line
to branch to must start with a line label, which is a string of characters appended by
a colon (:). The line label must not start with a digit or interfere with any keywords
reserved by Fingerprint. To branch to a line marked with a line label, just enter the
line label (without the colon).

Finish the program by sending an IMMEDIATE ON command before you RUN it.
The lines will automatically be numbered 10-20-30-40-50, and so on, but the line
numbers are not visible until you LIST the program. Line labels are not replaced by
line numbers.

The next example shows how line labels are used in a simple program:

IMMEDIATE OFF
GOSUB Q123

END

Q123 :SOUND 440,50
RETURN

IMMEDIATE ON

RUN

If you next send the LIST command, Fingerprint automatically adds the line
numbers:

10 GOSUB Q123

20 END

30 Q123: SOUND 440,50
40 RETURN

Sending Programs to the Printer

14

%

Each time a command line or program line is sent to the printer, the line is checked
for possible syntax errors.

Note: If verbosity is on, the printer returns either “Ok” or an error message.

There are three main methods of writing and transmitting a program to the printer:

* One line at a time. If you have a “non-intelligent” terminal that can only
transmit and receive ASCII characters, you must write and send each line
separately. All lines must include line numbers. To correct a mistake, you must
rewrite the complete line using the same line number.

Fingerprint Developer’s Guide

Chapter 2 — Understanding Fingerprint Syntax

Copying and pasting lines from a file. If the host computer has both a
communications program, such as HyperTerminal, and a text editor, you can
write the program in the text editor and then copy and paste it into the
communications program.

Sending a text file to the printer. If the host computer has both a
communication program and a text editor, you can write the program in the text
editor and send the whole program as a text file to the printer using the
communications program.

For more information, see “Sending Programs to the Printer” on page 14.

Commands for Editing Code

A

Caution

Fingerprint Developer’s Guide

This section describes Fingerprint commands you use while editing programs in
either Immediate Mode or Programming Mode:

NEW

Before you enter the first program line, always issue a NEW statement in the
Immediate Mode to CLEAR the printer working memory, CLOSE all files, and
CLEAR all variables.

Programs already in the working memory are deleted by a NEW statement.
To keep a program you have been using, use a SAVE statement before you
send the NEW statement.

IMMEDIATE OFF | IMMEDIATE ON

To write a program without entering line numbers, issue this statement to enter
Programming mode. For more information, see “Programming Without Line
Numbers” on page 14.

If an IMMEDIATE OFF statement has been issued before starting to write the
program, turn on the Immediate mode again using an IMMEDIATE ON
statement before using a RUN statement to start the program.

REM

Any characters preceded by REM are not regarded as part of the program and are
not executed. Use REM to add comments to your program. REM statements can
also be used at the end of lines if they are preceded by a colon (:).

END

Because subroutines are typically entered on lines with higher numbers than the
main program, always finish the main program with an END statement to
separate it from the subroutines. When an END statement is encountered, the
execution is terminated and all OPENed files and devices are CLOSEd.

LIST

You can LIST the entire program to the screen of the host. You can also choose
to list only part of the program, just the variables, or just the breakpoints. If you
have edited the program without line numbers, the numbers automatically
assigned to the lines at execution appear. LIST is issued in Immediate mode.

15

Chapter 2 — Understanding Fingerprint Syntax

e DELETE

Remove program lines using the DELETE statement in Immediate mode. Both
single lines and ranges of lines in consecutive order can be deleted.

¢ RENUM

Program lines can be renumbered to provide space for new program lines, to
change the order of execution, or to make it possible to MERGE to programs.
Line references for GOSUB, GOTO, and RETURN statements are renumbered
accordingly.

For debugging the program, use STOP, DBBREAK, DBBREAK OFF, DBSTDIO,
DBSTEP, DBEND, or CONT commands. For more information, see “Breaking
Program Execution” on page 26.

Using Conditional Instructions

Conditional instructions control the execution based on whether a numeric
expression is true or false. Fingerprint has one conditional instruction, which can be
used in two different ways.

Using an IF...THEN...[ELSE] Instruction

If a numeric expression is TRUE, then a certain statement should be executed, but if
the numeric expression is FALSE, optionally another statement should be executed.
This example allows you to compare two values entered from the keyboard of the

host:

10 INPUT “Enter first value ”, A%

20 INPUT “Enter second value ”, B%

30 Cs="1:st value > 2:nd value”

40 D$S="1:st value <= 2:nd value”

50 IF A%>B% THEN PRINT C$ ELSE PRINT DS
60 END

RUN

Another way to compare the two values in the example above is to use three
IF.. THEN statements:

10 INPUT “Enter first value ”, A%

20 INPUT “Enter second value ”, B%
30 CS="First value > second value”
40 D$S="First value < second value”
50 ES=“"First value = second value”
60 IF A%>B% THEN PRINT Cs

70 IF A%<B% THEN PRINT DS

80 IF A%=B% THEN PRINT ES

90 END

RUN

Using an IF...THEN...[ELSE]...END IF Instruction

It is also possible to execute multiple THEN and ELSE statements. Each statement
must be entered on a separate line, and the end of the IF...THEN...ELSE instruction
must be indicated by END IF on a separate line.

16 Fingerprint Developer’s Guide

Chapter 2 — Understanding Fingerprint Syntax

Example:

10 TIMES = “121500” : FORMAT TIMES “HH:MM”
20 A%=VAL(TIMES)

30 IF A%>120000 THEN

40 PRINT “TIME IS ”;TIMES(“F"); ". ";
50 PRINT “GO TO LUNCH!”

60 ELSE

70 PRINT “CARRY ON - ”;

80 PRINT “THERE’S MORE WORK TO DO!”
90 END TIF

RUN

This results in (for example):

TIME IS 12:15. GO TO LUNCH!

About Branching

Both conditional and unconditional branching is possible in Fingerprint.
* For information on conditional branching, see the next section.

* Forinformation on unconditional branching, see “Unconditional Branching
Using a GOTO Statement” on page 20.

* Forinformation on branching to subroutines, see the next section.

Branching to Subroutines

Fingerprint Developer’s Guide

A subroutine is a range of program lines intended to perform a specific task
separately from the main program execution. For example, branching to
subroutines can occur when:

e an error condition occurs.

* acondition is fulfilled, such as a certain key being pressed or a variable obtaining
a certain value.

e abreak instruction is received.
* background communication is interrupted.

You can also branch to a subroutine from different places in the same program. You
only need to write the routine once, making the program more compact.

The instruction for unconditional branching to subroutines is the GOSUB
statement. After branching, the subroutine is executed line by line until a RETURN
statement is encountered.

The same subroutine can be branched to as often as needed from different lines in
the main program. GOSUB remembers where the last branching took place, which
makes it possible to return to the correct line in the main program after the
subroutine has been executed. Subroutines may be nested, which means thata
subroutine may contain a GOSUB statement for branching to a secondary
subroutine.

Subroutines should be placed on lines with higher numbers than the main program.
Append the main program with an END statement to avoid unintentional
execution of subroutines.

17

Chapter 2 — Understanding Fingerprint Syntax

The next example illustrates nested subroutines:

10 PRINT “This is the main program”

20 GOSUB 1000

30 PRINT “You’re back in the main program”

40 END

1000 PRINT “This is subroutine 1”

1010 GOSUB 2000

1020 PRINT “You’re back from subroutine 2 to 1”
1030 RETURN

2000 PRINT “This is subroutine 2”

2010 GOSUB 3000

2020 PRINT “You’re back from subroutine 3 to 2”
2030 RETURN

3000 PRINT “This is subroutine 3”

3010 PRINT “You’re leaving subroutine 3”

3020 RETURN

RUN

Instructions for Conditional Branching

18

Conditional branching means that the program execution branches to a certain line
or subroutine when a specified condition is met. The following instructions are used
for conditional branching:

Using an IF...THEN GOTO...ELSE Instruction

If a specified condition is TRUE, the program branches to a certain line, but if the
condition is FALSE, something else is done as shown in the next example:

10 INPUT “Enter a value: ”,6A%

20 INPUT “Enter another value: ”,B%

30 IF A%=B% THEN GOTO 100 ELSE PRINT “NOT EQUAL”
40 END

100 PRINT “EQUAL"”

110 GOTO 40

RUN

Using an ON...GOSUB Instruction

Depending on the value of a numeric expression, the execution branches to one of

several subroutines. If the value is 1, the program branches to the first subroutine in
the instruction, if the value is 2 it branches to the second subroutine, and so on. The
next example includes such an instruction:

10 INPUT “Press key 1, 2, or 3 on host: ”, A%
20 ON A% GOSUB 1000, 2000, 3000

30 END

1000 PRINT “You have pressed key 1”: RETURN
2000 PRINT “You have pressed key 2”: RETURN
3000 PRINT “You have pressed key 3”: RETURN
RUN

Using an ON...GOTO Instruction

This instruction is similar to ON...GOSUB but the program branches to specified
lines instead of subroutines. This implies that you cannot use RETURN statements
to go back to the main program.

Fingerprint Developer’s Guide

Fingerprint Developer’s Guide

Chapter 2 — Understanding Fingerprint Syntax

ON...GOTO is shown in this example:

10 INPUT “Press key 1, 2, or 3 on host: ”, A%
20 ON A% GOTO 1000, 2000, 3000

30 END

1000 PRINT “You have pressed key 1”: GOTO 30
2000 PRINT “You have pressed key 2”: GOTO 30
3000 PRINT “You have pressed key 3”: GOTO 30
RUN

Using an ON BREAK...GOSUB Instruction

When a BREAK condition occurs on a specified device, the execution is interrupted
and branched to a specified subroutine. For example, the program can make the
printer emit a sound or display a message before the program is terminated. You can
also let the program execution continue along a different path.

In the next example, the program is interrupted when the Shift and Pause keys on
the printer keyboard are pressed. The execution branches to a subroutine, which
emits a siren-sounding signal three times. Then the execution returns to the main
program, which is indicated by a long shrill signal.

10 BREAK 1,35

20 BREAK 1 ON

30 ON BREAK 0 GOSUB 1000:REM Break from keyboard
40 ON BREAK 1 GOSUB 1000:REM Break from host (#)
50 GOTO 50

60 SOUND 800,100

70 BREAK 1 OFF: END

1000 FOR A%=1 TO 3

1010 SOUND 440,50

1020 SOUND 349,50

1030 NEXT A%

1040 GOTO 60

RUN

Using an ON COMSET...GOSUB Instruction

When one of several specified conditions interrupts the background
communication on a certain communication channel, the program branches to a
subroutine, such as reading the buffer. The interrupt conditions (end character,
attention string, or maximum number of characters) are specified by a COMSET
statement as in this example:

1 REM Exit program with #STOP&
10 COMSET1, “#”,“&",6 “Z2YX" , =" ,50
20 ON COMSET 1 GOSUB 2000

30 COMSET 1 ON

40 IF AS <> “STOP” THEN GOTO 40
50 COMSET 1 OFF

60 END

1000 END

2000 A$= COMBUFS (1)

2010 PRINT AS

2020 COMSET 1 ON

2030 RETURN

19

Chapter 2 — Understanding Fingerprint Syntax

Using an ON KEY...GOSUB Instruction

To use the printer keypad, each key can be enabled individually using a KEY ON
statement and assigned to a subroutine using an ON KEY GOSUB statement. The
subroutine should contain the instructions you want performed when the key is
pressed.

In the statements KEY (<id.>) ON, KEY (<id.>) OFF, and ON KEY (<id.>) GOSUB...,
the keys are specified by id. numbers enclosed by parentheses. For more
information, see “Using the Printer Keypad” on page 109.

Note that ON KEY...GOSUB excludes data input from the printer keypad.

This example shows how the two unshifted keys F1 (ID 10) and F2 (ID 11) are used
to change the printer contrast:

10 PRPOS 100,500

20 PRLINE 100,100

30 FONT “Univers”

40 PRPOS 100,300

50 MAG 4,4

60 PRTXT “SAMPLE”

70 ON KEY (10) GOSUB 1000

80 ON KEY (11) GOSUB 2000

90 KEY (10) ON : KEY (11) ON

100 GOTO 70

110 PRINTFEED

120 END

1000 SETUP “MEDIA,CONTRAST, -10%"

1010 PRPOS 100,100 : PRTXT “Weak Print”
1020 RETURN 110

2000 SETUP “MEDIA,CONTRAST,10%"”

2010 PRPOS 100,100 : PRTXT “Dark Print”
2030 RETURN 110

RUN

Unconditional Branching Using a GOTO Statement

20

The simplest type of unconditional branching is the waiting loop, which