
Command Reference Guide

Decode Filter Script
For Honeywell Mobile Computers Powered by Android

Disclaimer
Honeywell International Inc. (“HII”) reserves the right to make changes in specifications and other information contained in
this document without prior notice, and the reader should in all cases consult HII to determine whether any such changes
have been made. HII makes no representation or warranties regarding the information provided in this publication.

HII shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or consequential
damages resulting from the furnishing, performance, or use of this material. HII disclaims all responsibility for the
selection and use of software and/or hardware to achieve intended results.

This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated into another language without the prior written consent of HII.

Copyright  2020-2022 Honeywell International Inc. All rights reserved.

Web Address: sps.honeywell.com

Android is a trademark of Google LLC.

Other product names or marks mentioned in this document may be trademarks or registered trademarks of other
companies and are the property of their respective owners.

For patent information, refer to www.hsmpats.com.

https://sps.honeywell.com
http://www.hsmpats.com

Decode Filter Script Command Reference Guide i

TABLE OF CONTENTS

Chapter 1 - Getting Started... 1
Introduction.. 1

About the Filter Script... 1
Variables.. 2
Input/Output... 2
Named Functions .. 3
Constants.. 7
Applying a Filter.. 8
Disabling a Filter.. 9
Debugging a Filter... 9

Logcat debugging method.. 9
Script Details ... 9

Whitespace .. 9
Line Endings ... 9
Function Calls... 9
Structure.. 10

Add a Decode Filter Script to a Device.. 11

Chapter 2 - Sample Decode Filter Scripts ... 13
Introduction... 13

Reject Barcodes... 13
Remove “00” from Beginning of Barcode ... 13
Only Scan Barcodes Beginning with “02”... 14
If Barcode is GS1 128 AIM, Transmit]C1.. 14
Replace GS within Barcode with Two GS Codes... 14

ii Decode Filter Script Command Reference Guide

Scan Multiple Codes with Timeout ..15

CHAPTER

1

Decode Filter Script Command Reference Guide 1

GETTING STARTED

Introduction
This document describes how to configure a filter for decode results during
scanning. The Decode Filter feature provides configurability for modifying or
rejecting data strings as they emerge from the barcode decoder.

This feature applies to Honeywell Android devices with integrated scanners.

The Decode Filter is specified in a script form. The script is applied through a
configuration property of the internal scanner. The property is a multi-line string
value, containing the filter script. The filter script can call built-in functions to test
and extract parts of the decoded data, compose modified output, and save
information for subsequent scans.

Note: The content here assumes familiarity with configuring scanning properties and with
general programming.

About the Filter Script
The filter runs at the start of each scan, and after every decode result during the
scan.

The filter script resembles some common languages but is far more limited. It
supports if-blocks, statements, expressions, variables, constant strings, a few
functions and a few operators.

• The only data type is a string.

• All variables share a common namespace.

• The if-block is the only type of control structure.

• Everything is case-sensitive.

2 Decode Filter Script Command Reference Guide

Variables
The Decode Filter can read and store values in variables.

Variables may be named anything using alpha-numeric characters and
underscore, not starting with a number.

All variables exist in a common namespace.

All variables persist between calls to the filter.

All variables are set to empty when a script is compiled into a filter.

Input/Output
The Decode Filter interacts with decoding through a few variables. These variables
are set before the script is invoked, and examined after the script completes.

These variable names, and any future input/output variable names, start with the
‘_’ character.

Variable Name Initial Value Effect if value is modified by the
script

_event “start” – The start of a scan cycle.
Use this event to initialize any
persisted variables as needed.
“decode” – Scanning decoded a
data string.
“timeout” - Use this event to signal
the elapsed time.

No effect

_data The decoded data If set to the empty string value,
scanning continues as if the decode did
not occur.
Otherwise, this value is used as the
decoded data.

_aimid The AIM identifier for a barcode The 2nd and 3rd characters are used as
the altered AIM identifier.

_time Elapsed time since the start of scan
cycle.

No effect

Decode Filter Script Command Reference Guide 3

Named Functions
Function Description

and(...) Returns a non-empty string value if all the parameters are non-empty.
Otherwise, returns empty.

Example
if(and(_match1,match2)) {
 _data=concat(_match1,":",_match2);
}

The assignment inside the if block is only executed if _match1 and _match2 are
non-empty.

concat(...) Returns the concatenation of all parameters.

Example
 _data=concat(_data, "<SCAN");
The _data variable is assigned the value of _data appended by the string
"<SCAN".

find(subject,
substr)

Searches for the first occurrence of substr in subject. Returns the 0-based
character position of substr as a base-10 string. Returns empty if the search
fails.

Example
 mypos=find("Hello World", "World");

The variable mypos will return "6" as this is the zero-based position of "World"
inside the string "Hello World".

in(subject, …) Returns a non-empty value if subject is equal to any of the other parameters.
Otherwise, returns empty.

Example
 haseuro=in("Dollar", "Euro", "Yen");

The variable haseuro will have the empty value as "Dollar" is not in the listed
parameters.

or(…) Returns the value of the first non-empty parameter, or else the empty value.

Example
 firstmatch=or("", "second", "third");

The variable firstmatch will have the value "second" as this is the first non-
empty parameter.

4 Decode Filter Script Command Reference Guide

regex(subject,
pattern)

Applies the regular expression pattern to the subject string. Returns empty if no
match occurs, otherwise returns the full match value.

Match groups are written to variables _match0, _match1, _match2, and so on.

Example
 mymatch=_data.regex('^00(.*)');
 -or-
 mymatch=regex(_data, '^00(.*)');

regex is very powerful. The syntax is similar to PCRE. See, for example,
regex101.com for regex evaluation.

The above example will set mymatch to non-empty if the _data variable starts
with "00" followed by anything. The group match (.*) will be returned in the
automatic variable _match1. Here everything except the starting "00" will be
returned as _match1.

Function Description

https://regex101.com/

Decode Filter Script Command Reference Guide 5

sub(subject, start,
end)

Extract a substring from subject. Returns the extracted substring.

subject: The main string.

start: The character position of the start of the substring.
"nnn": Any base-10 integer specifies the starting character position in the
subject string. The first character in subject is position "0".
"-nnn": Start from the number of characters from the end of subject.
"@delimiter": Find the first occurrence of delimiter in subject, and start
immediately after it.

end:
"nnn": Any base-10 integer specifies the position of the character immediately
after the substring.
"-nnn": End at the specified number of characters before the end of subject.
"+nnn": End at the specified number of characters after the start position.
"@delimiter": Beginning from the start position, find the first occurrence of
delimiter in subject, and end immediately before it.

Example

mysub=sub("Hello World", "2");
Will return all characters of _data starting with zero-based position 2, so mysub
will be "llo World".

mysub=sub("Hello World", "0", "5");
Will return the substring starting with 0 until zero-based position 5. This will
give "Hello"

mysub=sub("Hello World", "1", "5");
Will return the substring starting with 1 until zero-based position 5. This will
give "ello"

mysub=sub("1234567890", "-4");
Will return the last 4 characters: "7890"

mysub=sub("1234567890","5","+2");
Will return "67", a substring of 2 characters starting at zero-based position 5. If
+nnn as end parameter is greater than the length of the string, the remaining
characters are returned.

mysub=sub("1234567890", "@6");
Returns everything after the first "6" character: "7890". If the character to look
for is not found in the string, nothing is returned.

mysub=sub("Hello World", "@ ", "-2");
Returns the substring starting after the first space character until two
characters before the end of the string. If the end parameter -nnn is larger than
the string, nothing is returned.

Function Description

6 Decode Filter Script Command Reference Guide

replace (subject,
start, end,
old_value,
new_value)

Extract a substring from subject and replace the substring's old_value with a
new_value.

subject: The main string.

start: similar definition as presented in sub function.

end: similar definition as presented in sub function.

old_value: character or substring to replace

new_Value: character or substring to use as replacement

Example 1
mysub=replace("Hello World","1","9","l","L")
Will return the substring starting with 1 until zero-based position 9 replacing all
occurrences of "l" with "L", so mysub will be "eLLo Wor".

Example 2
mysub=replace("Hello World","0","-4","l","L")
Will return the substring starting with 0 until zero-based position until 4
characters from the end, replacing all occurrences of "l" with "L", so mysub will
be "HeLLo W".

Example 3
mysub=replace("Hello World","0","","l","L")
Will return the substring starting with 0 until zero-based position until the end
of the string, replacing all occurrences of "l" with "L", so mysub will be
" HeLLo WorLd".

Function Description

Decode Filter Script Command Reference Guide 7

Constants
Represent a constant value by enclosing it in single-quotes, double-quotes or
forward slashes.

Escape sequences

In constants enclosed by single- and double-quotes, the escape sequence is
replaced per the table.

Examples

If(_event=='decode'){
 _data=_data.concat('\x40');
}

This will add the character with hex value 0x40 (decimal 64, char is the at symbol
'@') at the end of the data.

In constants enclosed by forward slashes, no replacements are made. The \
character is used only to force a / character into the constant string, rather than
marking the end.

If(_event=='decode'){
 sub2=_data.sub('@\x1d');
 _data=sub2;
}

Using the @ in a sub expression makes the sub look for the first occurrence of the
following character. The \x1d is the non-printable character for the GS or FNC1
code. In the example, only the part after the first GS symbol is returned. If no GS is
inside the data, nothing is returned.

If(_event=='decode'){
 sub2=_data.sub('\@'); # will not look for an @
 _data=sub2;
}

Sequence Replacement

\xhh A single character having the code unit value hh, where h is a hexadecimal digit.

\character Character, assuming character isn’t part of a sequence listed above.

8 Decode Filter Script Command Reference Guide

The above will not find the @ inside data. The \ does not remove the special
meaning of the @ inside a sub expression. The \character sequence is only
evaluated in regex expressions. To use an @ inside a sub expression, use \x40
instead:
 sub2=_data.sub('@\x40');

Then the part after the @ is returned by the sub expression.

If(_event=='decode'){
 split=_data.regex(/(.*)\/(.*)/);
}

In the above regex enclosed in forward slashes, the \ removes the special meaning
of the forward slash inside the regex. The regex will match any data with a forward
slash inside and return the data part before the first slash and the part after this
first slash in _match1 and _match2.

If(_event=='decode'){
 split=_data.regex("(.*)\[(.*)");
}

The left square bracket [will normally start a regex character list or class, for
example, for all digits this would be [0-9] or [0123456789] or [[:digit:]]. The back
slash before the [removes this special meaning and makes the [a literal search
character. The above regex will match any data with a [inside.

Applying a Filter
The filter script is part of Scanning settings.

• In Android Settings > Honeywell Settings > Scanning > Internal Scanner > (any
profile) > Decode Settings > Decode Filter > Decode filter script

• In DataCollectionService.xml, the property is DEC_DECODE_FILTER

The property takes a string value. The string contains the text of the filter script.

The script content must be encoded according to XML standards and use HTML
entities like “&” for an ampersand character or “<” and” >”.

Include the script in the settings file DataCollectionService.xml.

When the filter string property is applied to the scanner, it is compiled and
becomes the active filter.

Decode Filter Script Command Reference Guide 9

As with all scanning properties, the property value is part of a single wedge profile,
or a single application’s configuration. Changing apps changes the filter script
along with the other settings.

Disabling a Filter
The decode filter timeout option can be used to disable the logic inside the filter
script after a given amount of timeout. An expiration of non-zero default value will
cause the scanner to revert to normal scan mode without filter logic.

Debugging a Filter
When composing a filter, you will want to get feedback on how it is interpreted by
the device.

Currently, only the logcat method is available to help diagnose a filter script. Use
logcat with a filter of "Decode-Filter" to get only Decode Filter debug output, for
example: "logcat Decode-Filter:V *:S" or "logcat |grep Decode-Filter".

Logcat debugging method
A configuration option is available to write information to logcat about the
compilation and execution of the decoder filter script. This method requires
Android Debug Bridge (ADB) and familiarity with using adb logcat.

By default, no filter information is shared in logcat. During experimentation, cause
runtime diagnostic information to appear in logcat using the Debug Level
property. Set to 4 to emit the most information. Set to 0 to emit no information.

• In Android settings > Honeywell settings > Scanning > Internal Scanner > (any
profile) > Decode Settings > Decode Filter > Debug Level

• From an application, property DEC_DECODE_FILTER_DEBUG

Script Details

Whitespace
Whitespace separates tokens but otherwise is ignored, except inside of constants.

Line Endings
Single expressions must end with a semicolon, for example:

var1="Hello World";

Function Calls
Any number of parameters to a function call is allowed.

10 Decode Filter Script Command Reference Guide

These are equivalent:

a.fname(b, c)
fname(a, b, c)

Structure
This section provides an informal but more complete description of the script. A
script is a Block, which breaks down to tokens per the following:

Block: A sequence of zero or more of:

Statement
If-Block
;

Statement:

Function ;

If-Block: one of:

if (Expression) { Block }
if (Expression) { Block } else { Block }
if (Expression) { Block } else If-Block

Expression: one of:

Function-call
Name
Constant
Name = Expression
(Expression)
! Expression
Expression Binary-Operator Expression

Binary-Operator: One of: == != && ||<>

Function-call: one of

Name (Parameter-List)
Expression . Name (Parameter-List)

Name: A character sequence containing only characters A..Z, a..z, 0..9, and _. It may
not begin with 0..9.

Parameter-List: A comma-separated list of zero or more Expression.

Constant: A string of characters surrounded by single-quotes, double-quotes, or
forward-slashes. See section on Constants.

Decode Filter Script Command Reference Guide 11

Add a Decode Filter Script to a Device
You can add a decode filter script to a device in three ways:

• Create an XML file and copy it to the device.

• Create a barcode for the script using EZConfig or Enterprise Provisioner and
scan it.

• Enter the script in the Decode Filter window on the device in Settings >
Honeywell Settings > Scanning > Internal Scanner > Default Profile > Decode
Settings > Decode Filter.

Refer to the user guide for your device for more information on using these
features.

12 Decode Filter Script Command Reference Guide

CHAPTER

2

Decode Filter Script Command Reference Guide 13

SAMPLE DECODE FILTER SCRIPTS

Introduction
This section provides examples of decode filter scripts.

Reject Barcodes
This script rejects barcodes that do not begin with “1Z”.

if (_event == 'decode') {
prefix = _data.sub('0', '2');
if (prefix != '1Z') {

_data = '';
}

}

Remove “00” from Beginning of Barcode
This script checks if a barcode begins with “00”. If so, it removes the first two zeroes
and transmits the rest of the barcode.

if (_event == 'decode'){
prefix = _data.sub('0', '2');
body = _data.sub('2');
if(_aimId == ']C1' && prefix == '00') [

_data = body;
}

}

14 Decode Filter Script Command Reference Guide

Only Scan Barcodes Beginning with “02”
This script only scans barcodes if the first two characters are “02”.

if (_event == 'decode'){
prefix = _data.sub('0', '2');
if(prefix != '02'){

_data = '';
}

}

If Barcode is GS1 128 AIM, Transmit]C1
If the barcode is GS1 128, this script will transmit “]C1” and all other characters.

if (_event == 'decode'){
_body = _data.sub('0');
if(_aimId == ']C1'){

_data = concat(_aimId,_body);
}

}

Replace GS within Barcode with Two GS Codes
This script replaces two control codes inside data by the pipe character.

if (_event == 'decode'){

_data.regex('([[:alnum:]]+)\x1d([[:alnum:]]+)\x1d([[:alnum:]]+)'
);
if(_aimId == ']C1' && and(_match1,_match2,_match3)) {
 _data=concat(_aimId, _match1, "|", _match2, "|", _match3);
}

Decode Filter Script Command Reference Guide 15

Scan Multiple Codes with Timeout
To scan multiple codes with one scan button press, you will need to set up the filter
script for the multi-code scan. For instance, to read the desired three codes within
two seconds, enter the following script:
if (_event == 'start') {
 hm1 = '';
 hm2 = '';
 hm3 = '';
}

if (_event == 'decode') {
 if (_data.regex(/30........../)) {
 if(hm1 == '') {
 hm1 = _data;
 }
 }
 if (_data.regex(/4.......000./)) {
 if(hm2 == '') {
 hm2 = _data;
 }
 }
 if (_data.regex(/[57]......./)) {
 if(hm3 == '') {
 hm3 = _data;
 }
 }
 _data = '';
}

if (_event == 'timeout') {
 if(_time < '2000') {
 if (and(hm1, hm2, hm3)) {
 _data = concat(hm1, '|', hm2, '|', hm3);

 }
 }
}

When barcodes are scanned that match the above patterns, the data is transmitted
only if all patterns and conditions have been fulfilled.

16 Decode Filter Script Command Reference Guide

The above barcodes sheet can be scanned and will fulfill the Decode Filter when
the scan window (the backlight or aiming) is moved over the different barcodes. As
soon as all three patterns have been scanned within a desired time, the scanner
will transmit the result as a combination of the three barcodes:

301234567890|412345670001|51234567

or

301234567890|412345670001|71234567

The barcode scanner may be moved to be able to decode all barcodes and find the
patterns. The output sequence is defined by the script as the separator (here a pipe
symbol, |).

™

Honeywell
855 S. Mint St.
Charlotte, NC 28202

sps.honeywell.com

HS-DFS-A-EN-CR-01 Rev D
2/22

https://sps.honeywell.com

	Decode Filter Script
	Table of Contents
	Getting Started
	Introduction
	About the Filter Script
	Variables
	Input/Output
	Named Functions
	Constants
	Applying a Filter
	Disabling a Filter
	Debugging a Filter
	Logcat debugging method

	Script Details
	Whitespace
	Line Endings
	Function Calls
	Structure

	Add a Decode Filter Script to a Device

	Sample Decode Filter Scripts
	Introduction
	Reject Barcodes
	Remove “00” from Beginning of Barcode
	Only Scan Barcodes Beginning with “02”
	If Barcode is GS1 128 AIM, Transmit]C1
	Replace GS within Barcode with Two GS Codes
	Scan Multiple Codes with Timeout

