
Fingerprint

Developer’s Guide

ii Fingerprint Developer’s Guide

Intermec Technologies Corporation

Worldwide Headquarters
6001 36th Ave.W.
Everett, WA 98203
U.S.A.

www.intermec.com

The information contained herein is provided solely for the purpose of allowing customers to operate and service
Intermec-manufactured equipment and is not to be released, reproduced, or used for any other purpose without
written permission of Intermec Technologies Corporation.

Information and specifications contained in this document are subject to change without prior notice and do not
represent a commitment on the part of Intermec Technologies Corporation.

© 2012 by Intermec Technologies Corporation. All rights reserved.

The word Intermec, the Intermec logo, Norand, ArciTech, Beverage Routebook, CrossBar, dcBrowser,
Duratherm, EasyADC, EasyCoder, EasySet, Fingerprint, i-gistics, INCA (under license), Intellitag, Intellitag Gen2,
JANUS, LabelShop, MobileLAN, Picolink, Ready-to-Work, RoutePower, Sabre, ScanPlus, ShopScan, Smart
Mobile Computing, SmartSystems, TE 2000, Trakker Antares, and Vista Powered are either trademarks or
registered trademarks of Intermec Technologies Corporation.

There are U.S. and foreign patents as well as U.S. and foreign patents pending.

Contents
Contents

Before You Begin . xi
Safety Information . xi
Global Services and Support . xi
Who Should Read This Manual .xii
Related Documents .xii

1 Introduction to Fingerprint .1

What Is Fingerprint?. .2

Learning the Structure of Fingerprint Commands. .2

Fingerprint Operating Modes .3

Sending Fingerprint Commands to the Printer. .3

2 Understanding Fingerprint Syntax. .5

Learning Fingerprint Syntax. .6
About Keywords, Statements, and Lines. .6
About Functions .7
About Constants, Variables, and Expressions .8
About Operators .9

About Devices. .11

About Immediate Mode. .12
Sending Command Strings in Immediate Mode .12

About Programming Mode. .13
Using Line Numbers .13
Programming Without Line Numbers .14

Sending Programs to the Printer .14

Commands for Editing Code .15

Using Conditional Instructions. .16
Using an IF...THEN...[ELSE] Instruction .16
Using an IF...THEN...[ELSE]...END IF Instruction .16

About Branching .17
Branching to Subroutines .17
Instructions for Conditional Branching .18
Unconditional Branching Using a GOTO Statement .20
Branching to an Error-Handling Subroutine .21

About Loops .22
Using a FOR...NEXT Instruction .22
Fingerprint Developer’s Guide iii

Contents
Using a WHILE...WEND Instruction. .23

Structuring Your Program .24

Executing the Program. .25
Writing, Executing, and Listing a Short Program .25

Breaking Program Execution .26
Using a BREAK Statement .26
Using a BREAK...ON or BREAK...OFF Statement .27
Using an ON BREAK ...GOSUB...Statement .27

Saving the Program. .27
Naming the Program .28
Protecting the Program .28
Saving Without Line Numbers .28
Making Changes .29
Making Copies of Programs. .29
Renaming a Program .29
Creating a Startup Program .29

3 Managing Files .31

Using Directories in the Printer File System. .32
Using Path Shortcuts. .32

About File Types .33
Commands for Listing Files. .33
Listing a File With the FILELIST Program. .33

Commands for Creating and Managing Program Files. .34

Commands for Creating and Managing Data Files .34

Commands for Transferring Text and Binary Files .35
Using the TRANSFER KERMIT Statement .35
Using the ZMODEM Protocol .35
Using a TRANSFER STATUS Statement .35

Commands for Transferring Files Between Printers .36
Checking Transferred Files With CHECKSUM .36

Commands for Working With Arrays .36
Specifying Array Dimensions Using DIM. .37
Sorting Arrays .37
Splitting String Expressions .38
Calculating String Array Checksums. .38

4 Managing Input and Output .39

Preprocessing Input Data .40
Modifying Character Sets Using a MAP Statement .40
iv Fingerprint Developer’s Guide

Contents
Choosing a Character Set with a NASC Statement .41

Converting Input Data. .42

Generating Random Numbers. .43
Calling the RANDOM Function. .43
Using a RANDOMIZE Statement .43

Setting the Standard IN and OUT Channels .44

Input From a Host .44

Input From Sequential Files .45
Reading Data to a Variable With INPUT# .45
Reading a Specific Data Length With INPUT$.46
Reading a Line to a Variable With LINE INPUT# .46
Close a File .47
Verify the End of a File With EOF .47
Counting Data Blocks with LOC .47
Determining File Length with LOF .47

Input From a Random File .48
Creating a Buffer with FIELD .48
Copying a Specific Field with GET. .48
Closing a File .49
Finding the Last Field Read with LOC .49
Determining File Length with LOF .49

Input From the Printer Keypad .49

Controlling Communication .50
Using BUSY or READY Statements .50
Using an ON LINE | OFF LINE Statement .51
Controlling Printer Response with VERBON | VERBOFF .51

Managing Background Communication .51
Background Communication Example. .52
Retrieving Buffer Status With LOC or LOF .54
Setting Up RS-422 Communication .55

Output to the Standard OUT Channel .56
Printing Expressions With PRINT .56
Printing Characters by ASCII Values With PRINTONE .57

Redirecting Output to a File. .58

Output to Sequential Files .58
Using an OPEN Statement. .58
Printing Expressions to a Sequential File With PRINT# .59
Printing Characters by ASCII Values With PRINTONE#. .59
Using a CLOSE Statement .59
Counting Data Blocks and Determining File Length With LOC and LOF59
Fingerprint Developer’s Guide v

Contents
Output to Random Files .60
Opening a File for Random Input or Output With OPEN .60
Creating a Buffer With FIELD. .60
Left or Right Justifying Data With LSET and RSET .61
Transferring Data to the File with PUT .61
Using a CLOSE Statement .62
Finding the Last Field Read and Determining File Length With LOC and LOF62

Output to Communication Channels .62

Output to the Printer Display .63

5 Managing Fonts, Bar Codes, and Images .65

Managing Fonts. .66
About Font Types .66
Selecting Fonts .66
Controlling Font Direction, Size, Slant, and Width .66
Adding and Removing Fonts .67
Creating and Using Font Aliases. .67

About Bar Code Symbologies. .67
General Rules for Bar Code Printing .69
Commands for Working With Bar Codes. .69

Understanding Images and Image Files. .70
Standard Images .70
Downloading Image Files .71
Listing Images .71
Removing Images and Image Files .72

6 Designing Bar Code Labels .73

Creating a Layout With Fields .74

Positioning Fields in the Layout .75
About Units of Measure .76
About Insertion and Anchor Points .76
About Print Directions .78
Checking the Current Position .78
Checking the Size and Position of a Field .79

Creating Single-Line and Multi-Line Text Fields .79
Specifying a Typeface with FONT .79
Inverting Black and White Printing with NORIMAGE or INVIMAGE.79
Specifying Text for Printing with PRTXT. .80
Defining Borders With PRBOX. .80
Summary for Text Fields. .80

Creating Bar Code Fields .81
Specifying a Bar Code Symbology With BARSET .81
Choosing the Human-Readable Font with BARFONT. .82
vi Fingerprint Developer’s Guide

Contents
Specifying Input Data with PRBAR .82
Summary for Bar Code Fields .82

Creating Image Fields. .83
Magnifying Images with MAG .83
Inverting Black and White Printing with NORIMAGE or INVIMAGE.83
Specifying Images by Filename with PRIMAGE .83
Summary for Image Fields .84

Creating Boxes .85
Summary for Boxes .85

Creating Lines .85
Summary for Lines .86

Additional Printing Instructions. .86
Printing Partial Fields With the CLIP ON Command. .86
Inverting Intersection Printing With XORMODE .86

Using the LAYOUT Command .87
About Layout Requirements .88
Creating a Logotype Name File .91
Creating a Data File or Array .92
Creating an Error File or Array .92
Using the Files in a LAYOUT Statement. .93

Creating a Simple Label .95

Handling Errors With ERRHAND.PRG .99
Renumbering Lines When Merging Files .99
Merging Programs .99
Using the Print Key . 100

7 Controlling the Printer .101

Using Fingerprint to Control the Printer . 102

Controlling Media Feed. 102
Adjusting Media Feed Distance With TESTFEED . 102
Feeding Media With FORMFEED . 103
Overriding Start and Stop Adjust Values With LBLCOND . 103
Rotating the Platen Roller With CLEANFEED. 103
Checking Media Feed Distance With ACTLEN . 103

Controlling Printing. 104
Enabling the Automatic Paper Cutter With CUT ON. 104
Enabling the Label Taken Sensor With LTS& ON. 104
Repeating the Last Printing Operation With PRINTFEED . 104
Enabling Manual Printing With PRINT KEY ON . 105
Checking the Transfer Ribbon and Printhead With SYSVAR . 105
Handling Faulty Dots With HEAD, SET FAULTY DOT, and BARADJUST 105
Checking Printhead Status With FUNCTEST or FUNCTEST$. 106
Reprinting Labels After Interruptions. 107
Fingerprint Developer’s Guide vii

Contents
About Batch Printing. 107

Using the Printer Keypad. 109
Branching to Subroutines With KEY...ON and ON KEY...GOSUB 109
Defining Audio Beeps With KEY BEEP. 110
Entering ASCII Characters With INPUT#, INPUT$, or LINE INPUT# 110
Remapping the Keypad With KEYBMAP$. 110
Using the Keypad in Immediate Mode . 111

Using the Printer Display . 112
Customizing the Printer Display . 112

Controlling the LEDs and Beeper . 112
Using an LED ON|OFF|BLINK Statement . 112
Using a BEEP or SOUND Statement. 113

Setting the Date and Time . 113
Reading the Clock and Calendar . 113

Using Setup Mode Programmatically . 115
Reading the Current Setup. 115
Creating a Setup File . 115
Changing the Setup Using a Setup File. 115
Changing the Setup Using a Setup String . 116
Saving the Setup . 116

Using the SYSVAR System Variable . 116

Checking Hardware and Firmware Versions . 118

Checking Immediate Mode and STDIO Status. 118

Restarting the Printer . 119

About Printer Memory. 119
Permanent Memory . 119
Temporary Memory . 120
Other Memory Devices . 120
Changing the Current Directory. 121
Checking Free Memory . 121
Providing More Free Memory . 121
Formatting the Permanent Memory . 121

Using the Industrial Interface . 122

8 Error Handling .123

Standard Error Handling . 124
Choosing an Error Message Format . 124

Checking for Programming Errors . 125
Using a TRON|TROFF Statement . 125
Using STOP and CONT Statements . 125
viii Fingerprint Developer’s Guide

Contents
Specifying Breakpoints . 125

Commands for Error-Handling Routines . 126
Branching to Subroutines With ON ERROR GOTO... 126
Checking Error Codes with ERR and ERL . 126
Resuming Execution After Errors. 126
Returning Print Job and Printhead Status with PRSTAT. 126
Error Handling Example. 127

Using the ERRHAND.PRG Utility Program. 127
Modifying ERRHAND Variables and Subroutines . 128
Complete Listing of ERRHAND.PRG . 129

Standard Error Codes. 132

A Character Sets and Keywords .133

Introduction to Character Sets . 134

About the UTF-8 Character Set . 135
Example. 136

Reserved Keywords and Symbols. 137

I Index .139
Fingerprint Developer’s Guide ix

Contents
x Fingerprint Developer’s Guide

Before You Begin
Before You Begin

This section provides you with safety information, technical support information,
and sources for additional product information.

Safety Information
This section explains how to identify and understand the notes that are in this
document.

Global Services and Support

Warranty Information
To understand the warranty for your Intermec product, visit the Intermec web site
at www.intermec.com and click Support > Returns and Repairs > Warranty.

Disclaimer of warranties: The sample code included in this document is presented
for reference only. The code does not necessarily represent complete, tested
programs. The code is provided “as is with all faults.” All warranties are expressly
disclaimed, including the implied warranties of merchantability and fitness for a
particular purpose.

Web Support
Visit the Intermec web site at www.intermec.com to download our current manuals
(in PDF).

Visit the Intermec technical knowledge base (Knowledge Central) at
www.intermec.com and click Support > Knowledge Central to review technical
information or to request technical support for your Intermec product.

Send Feedback
Your feedback is crucial to the continual improvement of our documentation. To
provide feedback about this manual, please contact the Intermec Technical
Communications department directly at
TechnicalCommunications@intermec.com.

Telephone Support
In the U.S.A. and Canada, call 1-800-755-5505.

Outside the U.S.A. and Canada, contact your local Intermec representative. To
search for your local representative, from the Intermec web site, click About Us >
Contact Us.

A caution alerts you to an operating procedure, practice, condition, or
statement that must be strictly observed to prevent equipment damage or
destruction, or corruption or loss of data.

Note: Notes either provide extra information about a topic or contain special
instructions for handling a particular condition or set of circumstances.
Fingerprint Developer’s Guide xi

http://www.intermec.com
http://www.intermec.com
http://www.intermec.com
http://www.intermec.com
http://www.intermec.com
mailto:TechnicalCommunications@intermec.com

Before You Begin
Who Should Read This Manual
This document is written for the person who is responsible for developing
applications in the Intermec Fingerprint programming language. You need to be
familiar with operating, maintaining, and troubleshooting your Intermec printer.
You should also be familiar with networking terms, such as IP address.

Related Documents
This table contains a list of related Intermec documents and their part numbers.

The Intermec web site at www.intermec.com contains our documents (as PDF files)
that you can download for free.

To download documents

1 Visit the Intermec web site at www.intermec.com.

2 Click the Products tab.

3 Using the Products menu, navigate to your product page. For example, to find
the PC23d printer product page, click Printers > Desktop Printers > PC23d.

4 Click the Manuals tab.

If your product does not have its own product page, click Support > Manuals. Use
the Product Category, the Product Family, and Product to find your
documentation.

Document Title

 Fingerprint Command Reference Manual
xii Fingerprint Developer’s Guide

http://epsfiles.intermec.com/eps_files/eps_man/937-023.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://www.intermec.com
http://www.intermec.com

1

1
Introduction to Fingerprint

This chapter introduces Intermec Fingerprint and includes these topics:

• What Is Fingerprint?

• Learning the Structure of Fingerprint Commands

• Fingerprint Operating Modes

• Sending Fingerprint Commands to the Printer

Chapter 1 — Introduction to Fingerprint

2 Fingerprint Developer’s Guide

What Is Fingerprint?

Fingerprint is a programming language you use to create custom label formats and
printer application software. Fingerprint firmware is stored in the printer memory.
Intermec Direct Protocol is a subset of Intermec Fingerprint and is used for
combining variable input data with predefined label layouts.

This guide includes information on using Fingerprint to develop applications for
your Intermec printer. For information on specific Fingerprint or Direct Protocol
commands, see the Fingerprint Command Reference Manual.

To locate the latest Fingerprint firmware for your printer:

1 Visit the Intermec web site at www.intermec.com.

2 Click Support > Downloads.

3 Use the Product Category, the Product Family, and Product to find your
printer.

For more information on printer-specific features, such as setting up the printer,
loading printer firmware, or loading media, see your printer user manual.

Learning the Structure of Fingerprint Commands

Fingerprint commands are text strings that instruct the printer to perform a variety
of operations, such as downloading data from a host, configuring a bar code label
format, enabling and disabling printer options, or starting a print job and returning
print job status.

Each command is entered as a line. A Fingerprint program can consist of a single
line, or of many lines that include conditional branching and subroutines. Programs
can be stored in the printer memory, loaded from USB mass storage device, or sent
to the printer from a host PC.

For example, a simple Fingerprint program can look like:

10 PRPOS 200,200
20 DIR 3
30 ALIGN 5
40 PRIMAGE “GLOBE.1”
50 PRINTFEED
RUN

Note: Depending on your printer and hardware options, some Fingerprint
commands may not be supported. For more information, see the Fingerprint
Command Reference Manual.

10...50 Specify line numbers for the program.

PRPOS Specifies the insertion point for a printed object using
coordinates.

DIR Specifies the print direction, where 3 indicates that printing
follows the same direction as the print feed.

ALIGN Specifies which anchor point of a printed object is at the
insertion point. The value 5 represents the center anchor point.

http://www.intermec.com
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-023.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-023.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-023.zip

Chapter 1 — Introduction to Fingerprint

Fingerprint Developer’s Guide 3

For more information on command syntax, see “Understanding Fingerprint
Syntax” on page 5.

Fingerprint Operating Modes

Fingerprint has two operating modes:

• Immediate Mode. In this mode, Fingerprint commands are processed when the
printer receives a carriage return. Generally, commands sent in Immediate Mode
cannot be saved after they are processed.

Use Immediate Mode when you want to test the effects of commands without
saving the commands, such as when you are editing label formats. For more
information, see “About Immediate Mode” on page 12.

• Programming Mode. In this mode, you can save one or more Fingerprint
commands as programs. You can edit, copy, load, list, or merge programs with
other programs. For more information, see “About Programming Mode” on
page 13.

Sending Fingerprint Commands to the Printer

You can send commands to your printer using a serial port and a terminal
emulation program. To send Fingerprint commands to an Intermec printer using a
serial connection, you need:

• a computer with a screen and keyboard.

• a serial connection to the printer.

• a terminal emulation program, such as HyperTerminal or PuTTY, that can
transmit and receive ASCII characters.

For a complete list of methods to send commands to your printer, see your printer
user's manual.

Connect to the printer using a communications program

1 Connect the printer to the serial port (COM1) on your desktop PC. For more
information, see the user manual for your printer.

2 Turn on the printer.

3 On your desktop PC, start the communications program.

4 Create a connection to the printer using the TCP Port 9100, or the serial port
(COM1) and these parameters:

PRIMAGE Adds an image named “Globe.1” to the print buffer.

PRINTFEED Prints one label.

RUN Runs the program.

Baud rate 115200

Data bits 8

Parity None

Chapter 1 — Introduction to Fingerprint

4 Fingerprint Developer’s Guide

These serial connection parameters are the default for Fingerprint printers. If
you have changed the communication settings on your printer, use those
settings instead.

5 In the communications program, type:

SETUP WRITE “uart1:”

6 Press Enter. The printer returns its current setup parameters.

SETUP WRITE Command Results

Stop bits 1

Flow control None

5

2
Understanding Fingerprint Syntax

This chapter explains the basics of Fingerprint command syntax and
includes these sections:

• Learning Fingerprint Syntax

• About Devices

• About Immediate Mode

• About Programming Mode

• Sending Programs to the Printer

• Commands for Editing Code

• Using Conditional Instructions

• About Branching

• About Loops

• Structuring Your Program

• Executing the Program

• Breaking Program Execution

• Breaking Program Execution

Chapter 2 — Understanding Fingerprint Syntax

6 Fingerprint Developer’s Guide

Learning Fingerprint Syntax

Fingerprint syntax consists of a variety of keywords, parameters, and operators. For
specific command syntax, see the Fingerprint Command Reference Manual.

About Keywords, Statements, and Lines
A Fingerprint command begins with a keyword. Keywords indicate an action, a
printer setting to change, or other related information.

In some cases, a space character is a required part of the keyword, as in
LINEINPUT, where  indicates a required space character.

Some keywords can be used in an abbreviated form (for example, PT instead of
PRTXT). For more information, see the Fingerprint Command Reference Manual.

A statement is an instruction which specifies an operation. It consists of a keyword,
usually followed by one or several parameters, flags, or input data, which further
define the statement. The next table lists examples of statements.

A line in a Fingerprint program may contain up to 32,767 characters and must
always be terminated by a carriage return character (ASCII 13 decimal).

In Programming mode, lines are always numbered, although if you allow
Fingerprint to number the lines automatically, the numbers are not visible until the
program is listed. In Immediate mode or Direct Protocol, numbering is not
required.

Keyword Examples

Keyword Description

BARSET Specifies a bar code.

COPY Copies a file.

FORMAT DATE$ Specifies the format to be used for dates (such as YYMMDD).

GOTO Branches unconditionally to a specified line.

STORE IMAGE Sets up parameters for storing an image in printer memory.

Statement Examples

Keyword and Statement Description

PRTXT “HELLO” Keyword PRTXT indicates that the following data
(“HELLO”) is to be placed in a text field.

ON BREAK 1 GOSUB 1000 ON BREAK 1 GOSUB indicates that on the first break
interrupt instruction, the program must branch to a
subroutine at line 1000.

FILES “tmp:”, A Indicates that all files (A) in the “tmp:” directory should
be listed to the printer OUT channel.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-023.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 7

If you type the line numbers manually, start with number 10 and increment line
numbers up by 10s (10, 20, 30, 40, etc.). That makes it easier to insert additional
lines (for example 11,12,13...etc.) later.

After typing the line number, use a space character to separate it from the keyword
and statement that follows, as in this example:

100 FONT “Univers”

To send multiple Fingerprint commands on the same line, add a colon (:) between
each command:

100 FONT “Univers”:PRTXT “HELLO”

You cannot change a line after you send it to the printer. However, you can send a
new line that uses the same line number to replace the existing line, or delete the line
using a DELETE statement.

About Functions
A function is a statement which returns a value. A function consists of a keyword
combined with values, flags, and/or operators enclosed by parentheses. The next
table lists function examples.

You can insert a function inside a statement, or on a line containing other
instructions. They are often used in connection with conditional statements, as in
this example:

320 IF (PRSTAT AND 1) THEN GOTO 1000

You can add spaces to separate a function from other instructions on the same line,
or to separate a keyword from the rest of the statement.

Note: By default, if you enter a carriage return on the host, the printer echoes back a
Carriage Return + Line Feed (ASCII 13 + 10 decimal). With the setup option “New
Line”, you can restrict the printer to only echo back either a Carriage Return (ASCII
13 decimal) or a Line Feed (ASCII 10 decimal).

Note: In Immediate Mode and in Direct Protocol, you can send a complete set of
instructions on one line:

PP100,250:FT“Univers”:PT“Text 1”:PF ?

Function Examples

Keyword and Function Description

CHR$(65) Return the readable character for ASCII code 65.

TIME$(“F”) Return the current time based on the currently
specified format.

ABS(20*5) Return the absolute value of 20*5.

IF(PRSTAT AND 1)... If the current position of the insertion point +1...

Chapter 2 — Understanding Fingerprint Syntax

8 Fingerprint Developer’s Guide

About Constants, Variables, and Expressions
Constants are fixed text or values. There are two kinds of constants:

• String constants are sequences of text. Numbers and other characters are
considered part of the sequence and are not processed.

String constants must always be enclosed by double quotation marks (ASCII 34
decimal); for example, “TEST.PRG”. If the string constant is the last part of a
line, the closing quotation mark is optional.

• Numeric constants are fixed values. Only decimal integers are allowed (1, 2, 3,
and so on). Values are positive unless preceded by a minus sign (-). Optionally,
you can indicate a positive value using a leading plus sign (+).

Variables also hold data, but their contents can change. You can specify the contents
of a variable or use it as a container for data from Fingerprint operations. There are
two types of variables:

• String variables store sequences of text. The maximum size of a string is 64 Kb
(65,535 characters). String variables are indicated by a trailing $ sign, as in these
examples:

A$=“INTERMEC”
B$ = TIME$
LET C$ = DATE$

• Numeric variables store only numbers. The maximum value of a numeric
variable is 2,147,483,647. Numeric variables are indicated by a trailing % sign, as
in these examples:

A% = 150
B% = DATEDIFF(“031201”,“031230”)
LET C% = 2^2

A variable name can include letters, numbers, and decimal points. The first
character must always be a letter, and the complete name must not be identical to
any keywords or keyword abbreviations. If part of the variable name is identical to a
keyword or keyword abbreviation, other characters must precede and follow that
part of the variable name or errors will result. The next table lists some examples.

For a list of reserved keywords, see “Reserved Keywords and Symbols” on
page 137.

Variable Name Examples

Variable Name Description

LOC$ LOC is a keyword. This will cause an error.

LOCK$ LOC is not preceded by other characters. This causes an error.

CLOC$ LOC is not followed by other characters. This causes an error.

CLOCK$ LOC is preceded by C and followed by K. This variable name is valid.

Note: Intermec suggests that all variables and line labels start with a q.

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 9

An expression can be either a constant or a variable. There are two types of
expressions:

• String expressions (sometimes expressed as <sexp>) are carriers of
alphanumeric text (string constants and string variables).

• Numeric expressions (sometimes expressed as <nexp>) contain numeric values,
numeric variables, and operators (numeric constants and numeric variables).

About Operators
There are three main types of operators: arithmetic, relational, and logical.

Using Arithmetic Operators
These operators perform calculations as described in the next table.

Using Relational Operators
These operators check the difference between numeric values as described in the
next table.

Relational operators return:

-1 if relation is TRUE.

0 if relation is FALSE.

Arithmetic Operators

Operator Description Example

+ Addition 2+2=4

- Subtraction 4-1=3

* Multiplication 2*3=6

\ Integer division 6\2=3

MOD Modulo arithmetic. Results in an integer value equaling
the remainder of an interger division.

5MOD2=1

^ Exponent 5^2=25

() Specifies the order of calculation. 7+5^2\8 = 10

(7+5^2)\8 = 4

Relational Operators

Operator Description

< Less than

<= Less than or equal to

<> Not equal to

= Equal to. Also used as an assignment operator.

> Greater than

>= Greater than or equal to

Chapter 2 — Understanding Fingerprint Syntax

10 Fingerprint Developer’s Guide

The following rules apply:

• Arithmetic operations are evaluated before relational operations.

• Letters are greater than digits.

• Lowercase letters are greater than their uppercase counterparts.

• The ASCII code “values” of letters increase alphabetically and the leading and
trailing blanks are significant.

• Strings are compared by their corresponding ASCII code value.

Using Logical Operators
Logical operators combine simple logical expressions to form more complicated
logical expressions.

The logical operators operate bitwise on the arguments as in this example:

1 AND 2 = 0

Logical operators can be used to connect relational operators:

A%10 AND A%<100

The principles are illustrated by the following examples, where A and B are simple
logical expressions.

Logical Operators

Operator Description

AND Conjunction

OR Disjunction

XOR Exclusive OR

Examples of Logical Operator AND

A B A AND B

T T T

T F F

F T F

F F F

Examples of Logical OperatorXOR

A B A XOR B

T T F

T F T

F T T

F F F

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 11

About Devices

“Device” is a generic term for communication channels, various parts of the printer
memory, and operator interfaces such as the printer display and keyboard.

You may need to specify a device in relation to a Fingerprint command. The next
table lists available device names.

Devices are referred to by name with directory commands, such as SAVE, KILL, or
FORMAT, and with OPEN statements.

Examples of Logical Operator OR

A B A OR B

T T T

T F T

F T T

F F F

Note: Use the DEVICES command to see the list of devices your printer supports.

Communication Devices

Name Refers To Can Be OPENed For

console: Printer display and/or keyboard Input/Output

uart1: Serial communication port Input/Output

uart2: Serial communication port (optional) Input/Output

uart3: Serial communication port (optional) Input/Output

centronics: Parallel communication Input

net1: EasyLAN communication (optional) Input/Output

usb1: USB communication port Input/Output

finisher: Printer finisher interface Input/Output

Memory Devices

Name Refers To Can Be OPENed For

/rom Printer firmware (Kernel) and read-only
memory. Also called “rom:”.

Input (files only)

/c Main printer memory. Also called “c:” or
“ram:”

Input/Output/Random

tmp: Printer temporary memory. Input/Output/Append/
Random (files only)

Note: Device names must be lowercase characters only and enclosed by quotation
marks (for example, “/c”). Some devices must have a trailing colon (:), as shown.

Chapter 2 — Understanding Fingerprint Syntax

12 Fingerprint Developer’s Guide

In instructions used in connection with communication (for example BREAK,
BUSY/READY, COMSET), the keyboard/display unit and the communication
channels are specified by numbers instead of names:

0 = “console:”

1 = “uart1:”

2 = “uart2:”

3 = “uart3:”

4 = “centronics:”

5 = “net1:”

6 = “usb1:”

About Immediate Mode

In Immediate mode, Fingerprint commands are executed when a carriage return is
received. Most commands can be used in Immediate mode, but cannot be saved
after execution.

Immediate mode is primarily used to:

• Send commands to print a single label that is not reused.

• Send command strings which have been edited and saved as a file on the host
computer. This method resembles “Escape sequences” used in other types of
label printers.

• Send commands that can be used in either Immediate or Programming mode,
such as DELETE, LOAD, MERGE, NEW, REBOOT, or RUN.

Any command line that does not begin with a number, but ends in a carriage return,
is treated as an Immediate mode command.

Sending Command Strings in Immediate Mode
You can send command strings in Immediate Mode to print label formats.
Command strings can be sent in a single line:

PRPOS 160,250:DIR 3:ALIGN 4:FONT “Univers”:PRTXT
“Hello”:PRINTFEED ?

Or, with each command on a separate line:

PRPOS 160,250
DIR 3
AN 4
FT “Univers”
PT “Hello”
PF

Note: The last example uses command abbreviations, such as PF for PRINTFEED.
Not all Fingerprint commands can be abbreviated. For more information, see the
Fingerprint Command Reference Manual.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 13

As soon as a carriage return is received, the firmware checks the instructions for
syntax errors. Provided there is a working two-way communication and the
verbosity is on, the printer returns either an error message or “Ok” to the host.

About Programming Mode

Use Programming mode to create programs consisting of one or more program
lines. The complete program can be saved in printer memory and used anytime. The
program is executed when you issue a RUN statement.

Fingerprint assumes input for Programming mode:

• when a line starts with a number.

• after you disable Immediate mode by sending an IMMEDIATE OFF command.

One or several lines make up a program, which can be executed as many times as you
wish. A program can be saved, copied, loaded, listed, merged, and killed. For more
information, see “Commands for Creating and Managing Program Files” on
page 34.

All program lines include line numbers that are either manually entered as the
program is edited, or provided automatically and invisibly by Fingerprint after an
IMMEDIATE ON statement has been executed.

The program is executed in ascending line number order when a RUN statement is
entered on a line, followed by a carriage return. Branching and loops can be created
in the program to make the execution deviate from a strict ascending order.

Often, programs are created as autoexec files that start up automatically when the
printer is switched on, and keep running indefinitely.

Using Line Numbers
You can manually enter line numbers as you write program lines. Intermec
recommends that you start with line number 10 and use an increment of 10 between
lines to allow additional lines to be inserted later if necessary. To make the program
easier to read, you can use a space character between the line number and the
instruction. If you do not use a space, Fingerprint automatically inserts a space
character when the program is listed.

The next example shows a short program with line numbers:

10 PRPOS 200,200
20 DIR 3
30 ALIGN 5
40 PRIMAGE “GLOBE.1”
50 PRINTFEED
RUN

The last line has no line number, and contains the RUN command plus a carriage
return. This orders the printer to execute all preceding lines in consecutive
ascending order according to their line numbers.

Note: If you need more flexibility than Immediate mode provides, use Intermec
Direct Protocol, since it allows variable input data to be combined with predefined
layouts, handles counters, and includes a flexible error-handler. For more
information, see the Intermec Direct Protocol Programmer’s Reference Manual.

http://epsfiles.intermec.com/eps_files/eps_man/1-960597-06%20PRM%20DP%208.60.pdf

Chapter 2 — Understanding Fingerprint Syntax

14 Fingerprint Developer’s Guide

In this manual, the programming examples will generally have line numbers in
order to make them easier to understand. For more complex programs,
programming without line numbers may be both easier and quicker as described in
the next section.

Programming Without Line Numbers
To write program lines without manually entering line numbers, send the
IMMEDIATE OFF command first. Then you can write the program line by line
without having to type a line number at the start of each line. In other respects, you
can generally work just as when using line numbers.

To make the execution branch to a certain line, such as a GOTO statement, the line
to branch to must start with a line label, which is a string of characters appended by
a colon (:). The line label must not start with a digit or interfere with any keywords
reserved by Fingerprint. To branch to a line marked with a line label, just enter the
line label (without the colon).

Finish the program by sending an IMMEDIATE ON command before you RUN it.
The lines will automatically be numbered 10-20-30-40-50, and so on, but the line
numbers are not visible until you LIST the program. Line labels are not replaced by
line numbers.

The next example shows how line labels are used in a simple program:

IMMEDIATE OFF
GOSUB Q123
END
Q123:SOUND 440,50
RETURN
IMMEDIATE ON
RUN

If you next send the LIST command, Fingerprint automatically adds the line
numbers:

10 GOSUB Q123
20 END
30 Q123: SOUND 440,50
40 RETURN

Sending Programs to the Printer

Each time a command line or program line is sent to the printer, the line is checked
for possible syntax errors.

There are three main methods of writing and transmitting a program to the printer:

• One line at a time. If you have a “non-intelligent” terminal that can only
transmit and receive ASCII characters, you must write and send each line
separately. All lines must include line numbers. To correct a mistake, you must
rewrite the complete line using the same line number.

Note: If verbosity is on, the printer returns either “Ok” or an error message.

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 15

• Copying and pasting lines from a file. If the host computer has both a
communications program, such as HyperTerminal, and a text editor, you can
write the program in the text editor and then copy and paste it into the
communications program.

• Sending a text file to the printer. If the host computer has both a
communication program and a text editor, you can write the program in the text
editor and send the whole program as a text file to the printer using the
communications program.

For more information, see “Sending Programs to the Printer” on page 14.

Commands for Editing Code

This section describes Fingerprint commands you use while editing programs in
either Immediate Mode or Programming Mode:

• NEW

Before you enter the first program line, always issue a NEW statement in the
Immediate Mode to CLEAR the printer working memory, CLOSE all files, and
CLEAR all variables.

• IMMEDIATE OFF | IMMEDIATE ON

To write a program without entering line numbers, issue this statement to enter
Programming mode. For more information, see “Programming Without Line
Numbers” on page 14.

If an IMMEDIATE OFF statement has been issued before starting to write the
program, turn on the Immediate mode again using an IMMEDIATE ON
statement before using a RUN statement to start the program.

• REM

Any characters preceded by REM are not regarded as part of the program and are
not executed. Use REM to add comments to your program. REM statements can
also be used at the end of lines if they are preceded by a colon (:).

• END

Because subroutines are typically entered on lines with higher numbers than the
main program, always finish the main program with an END statement to
separate it from the subroutines. When an END statement is encountered, the
execution is terminated and all OPENed files and devices are CLOSEd.

• LIST

You can LIST the entire program to the screen of the host. You can also choose
to list only part of the program, just the variables, or just the breakpoints. If you
have edited the program without line numbers, the numbers automatically
assigned to the lines at execution appear. LIST is issued in Immediate mode.

Programs already in the working memory are deleted by a NEW statement.
To keep a program you have been using, use a SAVE statement before you
send the NEW statement.

Chapter 2 — Understanding Fingerprint Syntax

16 Fingerprint Developer’s Guide

• DELETE

Remove program lines using the DELETE statement in Immediate mode. Both
single lines and ranges of lines in consecutive order can be deleted.

• RENUM

Program lines can be renumbered to provide space for new program lines, to
change the order of execution, or to make it possible to MERGE to programs.
Line references for GOSUB, GOTO, and RETURN statements are renumbered
accordingly.

For debugging the program, use STOP, DBBREAK, DBBREAK OFF, DBSTDIO,
DBSTEP, DBEND, or CONT commands. For more information, see “Breaking
Program Execution” on page 26.

Using Conditional Instructions

Conditional instructions control the execution based on whether a numeric
expression is true or false. Fingerprint has one conditional instruction, which can be
used in two different ways.

Using an IF...THEN...[ELSE] Instruction
If a numeric expression is TRUE, then a certain statement should be executed, but if
the numeric expression is FALSE, optionally another statement should be executed.
This example allows you to compare two values entered from the keyboard of the
host:

10 INPUT “Enter first value ”, A%
20 INPUT “Enter second value ”, B%
30 C$=“1:st value > 2:nd value”
40 D$=“1:st value <= 2:nd value”
50 IF A%>B% THEN PRINT C$ ELSE PRINT D$
60 END
RUN

Another way to compare the two values in the example above is to use three
IF...THEN statements:

10 INPUT “Enter first value ”, A%
20 INPUT “Enter second value ”, B%
30 C$=“First value > second value”
40 D$=“First value < second value”
50 E$=“First value = second value”
60 IF A%>B% THEN PRINT C$
70 IF A%<B% THEN PRINT D$
80 IF A%=B% THEN PRINT E$
90 END
RUN

Using an IF...THEN...[ELSE]...END IF Instruction
It is also possible to execute multiple THEN and ELSE statements. Each statement
must be entered on a separate line, and the end of the IF...THEN...ELSE instruction
must be indicated by END IF on a separate line.

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 17

Example:

10 TIME$ = “121500”:FORMAT TIME$ “HH:MM”
20 A%=VAL(TIME$)
30 IF A%>120000 THEN
40 PRINT “TIME IS ”;TIME$(“F”); ”. ”;
50 PRINT “GO TO LUNCH!”
60 ELSE
70 PRINT “CARRY ON - ”;
80 PRINT “THERE’S MORE WORK TO DO!”
90 END IF
RUN

This results in (for example):

TIME IS 12:15. GO TO LUNCH!

About Branching

Both conditional and unconditional branching is possible in Fingerprint.

• For information on conditional branching, see the next section.

• For information on unconditional branching, see “Unconditional Branching
Using a GOTO Statement” on page 20.

• For information on branching to subroutines, see the next section.

Branching to Subroutines
A subroutine is a range of program lines intended to perform a specific task
separately from the main program execution. For example, branching to
subroutines can occur when:

• an error condition occurs.

• a condition is fulfilled, such as a certain key being pressed or a variable obtaining
a certain value.

• a break instruction is received.

• background communication is interrupted.

You can also branch to a subroutine from different places in the same program. You
only need to write the routine once, making the program more compact.

The instruction for unconditional branching to subroutines is the GOSUB
statement. After branching, the subroutine is executed line by line until a RETURN
statement is encountered.

The same subroutine can be branched to as often as needed from different lines in
the main program. GOSUB remembers where the last branching took place, which
makes it possible to return to the correct line in the main program after the
subroutine has been executed. Subroutines may be nested, which means that a
subroutine may contain a GOSUB statement for branching to a secondary
subroutine.

Subroutines should be placed on lines with higher numbers than the main program.
Append the main program with an END statement to avoid unintentional
execution of subroutines.

Chapter 2 — Understanding Fingerprint Syntax

18 Fingerprint Developer’s Guide

The next example illustrates nested subroutines:

10 PRINT “This is the main program”
20 GOSUB 1000
30 PRINT “You’re back in the main program”
40 END
1000 PRINT “This is subroutine 1”
1010 GOSUB 2000
1020 PRINT “You’re back from subroutine 2 to 1”
1030 RETURN
2000 PRINT “This is subroutine 2”
2010 GOSUB 3000
2020 PRINT “You’re back from subroutine 3 to 2”
2030 RETURN
3000 PRINT “This is subroutine 3”
3010 PRINT “You’re leaving subroutine 3”
3020 RETURN
RUN

Instructions for Conditional Branching
Conditional branching means that the program execution branches to a certain line
or subroutine when a specified condition is met. The following instructions are used
for conditional branching:

Using an IF...THEN GOTO...ELSE Instruction
If a specified condition is TRUE, the program branches to a certain line, but if the
condition is FALSE, something else is done as shown in the next example:

10 INPUT “Enter a value: ”,A%
20 INPUT “Enter another value: ”,B%
30 IF A%=B% THEN GOTO 100 ELSE PRINT “NOT EQUAL”
40 END
100 PRINT “EQUAL”
110 GOTO 40
RUN

Using an ON...GOSUB Instruction
Depending on the value of a numeric expression, the execution branches to one of
several subroutines. If the value is 1, the program branches to the first subroutine in
the instruction, if the value is 2 it branches to the second subroutine, and so on. The
next example includes such an instruction:

10 INPUT “Press key 1, 2, or 3 on host: ”, A%
20 ON A% GOSUB 1000, 2000, 3000
30 END
1000 PRINT “You have pressed key 1”: RETURN
2000 PRINT “You have pressed key 2”: RETURN
3000 PRINT “You have pressed key 3”: RETURN
RUN

Using an ON...GOTO Instruction
This instruction is similar to ON...GOSUB but the program branches to specified
lines instead of subroutines. This implies that you cannot use RETURN statements
to go back to the main program.

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 19

ON...GOTO is shown in this example:

10 INPUT “Press key 1, 2, or 3 on host: ”, A%
20 ON A% GOTO 1000, 2000, 3000
30 END
1000 PRINT “You have pressed key 1”: GOTO 30
2000 PRINT “You have pressed key 2”: GOTO 30
3000 PRINT “You have pressed key 3”: GOTO 30
RUN

Using an ON BREAK...GOSUB Instruction
When a BREAK condition occurs on a specified device, the execution is interrupted
and branched to a specified subroutine. For example, the program can make the
printer emit a sound or display a message before the program is terminated. You can
also let the program execution continue along a different path.

In the next example, the program is interrupted when the Shift and Pause keys on
the printer keyboard are pressed. The execution branches to a subroutine, which
emits a siren-sounding signal three times. Then the execution returns to the main
program, which is indicated by a long shrill signal.

10 BREAK 1,35
20 BREAK 1 ON
30 ON BREAK 0 GOSUB 1000:REM Break from keyboard
40 ON BREAK 1 GOSUB 1000:REM Break from host (#)
50 GOTO 50
60 SOUND 800,100
70 BREAK 1 OFF: END
1000 FOR A%=1 TO 3
1010 SOUND 440,50
1020 SOUND 349,50
1030 NEXT A%
1040 GOTO 60
RUN

Using an ON COMSET...GOSUB Instruction
When one of several specified conditions interrupts the background
communication on a certain communication channel, the program branches to a
subroutine, such as reading the buffer. The interrupt conditions (end character,
attention string, or maximum number of characters) are specified by a COMSET
statement as in this example:

1 REM Exit program with #STOP&
10 COMSET1,“#”,“&”,“ZYX”,“=”,50
20 ON COMSET 1 GOSUB 2000
30 COMSET 1 ON
40 IF A$ <> “STOP” THEN GOTO 40
50 COMSET 1 OFF
60 END
1000 END
2000 A$= COMBUF$(1)
2010 PRINT A$
2020 COMSET 1 ON
2030 RETURN

Chapter 2 — Understanding Fingerprint Syntax

20 Fingerprint Developer’s Guide

Using an ON KEY...GOSUB Instruction
To use the printer keypad, each key can be enabled individually using a KEY ON
statement and assigned to a subroutine using an ON KEY GOSUB statement. The
subroutine should contain the instructions you want performed when the key is
pressed.

In the statements KEY (<id.>) ON, KEY (<id.>) OFF, and ON KEY (<id.>) GOSUB...,
the keys are specified by id. numbers enclosed by parentheses. For more
information, see “Using the Printer Keypad” on page 109.

Note that ON KEY...GOSUB excludes data input from the printer keypad.

This example shows how the two unshifted keys F1 (ID 10) and F2 (ID 11) are used
to change the printer contrast:

10 PRPOS 100,500
20 PRLINE 100,100
30 FONT “Univers”
40 PRPOS 100,300
50 MAG 4,4
60 PRTXT “SAMPLE”
70 ON KEY (10) GOSUB 1000
80 ON KEY (11) GOSUB 2000
90 KEY (10) ON : KEY (11) ON
100 GOTO 70
110 PRINTFEED
120 END
1000 SETUP “MEDIA,CONTRAST,-10%”
1010 PRPOS 100,100 : PRTXT “Weak Print”
1020 RETURN 110
2000 SETUP “MEDIA,CONTRAST,10%”
2010 PRPOS 100,100 : PRTXT “Dark Print”
2030 RETURN 110
RUN

Unconditional Branching Using a GOTO Statement
The simplest type of unconditional branching is the waiting loop, which means that
a program line branches the execution to itself and waits for something to happen,
such as a keypress.

This example shows how the program waits for the F1 key to be pressed (line 30).
When the key is pressed, the printer beeps:

10 ON KEY (10) GOSUB 1000
20 KEY (10) ON
30 GOTO 30
40 END
1000 SOUND 880,100
1010 END
RUN

It is also possible to branch to a different line, as in this example:

10 INPUT “Enter a number: ”, A%
20 IF A%<0 THEN GOTO 100 ELSE GOTO 200
30 END
100 PRINT “NEGATIVE VALUE”
110 GOTO 30
200 PRINT “POSITIVE VALUE”
210 GOTO 30
RUN

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 21

Depending on whether the value you enter from the host is less than 0 or not, the
execution branches to one of two lines (100 or 200), which print different messages.
In either case, the execution branches to line 30, where the program ends.

There are more elegant ways to create such a program, but this example illustrates
how GOTO always branches to a specific line. Line 20 is an example of conditional
branching. For more information, see “Instructions for Conditional Branching”
on page 18.

The GOTO statement can also be used to resume program execution at a specified
line after a STOP statement.

Branching to an Error-Handling Subroutine
Two instructions are used to branch to and from an error-handling subroutine
when an error occurs.

Using an ON ERROR GOTO Instruction
ON ERROR GOTO branches the execution to a specified line when an error occurs,
ignoring the standard error-trapping routine. If the line number is specified as 0, the
standard error-trapping routine is used.

Resuming Execution After Error Handling
Use a RESUME statement to resume execution after an error-handling subroutine
has been executed. RESUME is only used in connection with ON ERROR GOTO
statements and can be used as follows:

• RESUME or RESUME 0 - Execution is resumed at the statement where the error
occurred.

• RESUME NEXT - Execution is resumed at the statement after the one that
caused the error.

• RESUME <ncon> - Execution is resumed at the specified line.

• RESUME <line label> - Execution is resumed at the specified line label.

This example shows branching to a subroutine when an error has occurred. The
subroutine determines the type of error and takes the appropriate action. In this
example only one error (“1019 Invalid font”) is checked. After the error is cleared by
substituting the missing font, the execution is resumed.

10 ON ERROR GOTO 1000
20 PRTXT “HELLO”
30 PRINTFEED
40 END
1000 IF ERR=1019 THEN FONT “OCR-A” ELSE GOTO 2000
1010 PRINT “Substitutes missing font”
1020 FOR A%=1 TO 3
1030 SOUND 440,50
1040 SOUND 359,50
1050 NEXT A%
1060 RESUME
2000 PRINT “Undefined error, execution terminated”
2010 END

RUN

Chapter 2 — Understanding Fingerprint Syntax

22 Fingerprint Developer’s Guide

About Loops

One type of loop has already been described in connection with the GOTO
statement, where GOTO referred to the same line or a previous line. There are two
instructions for using more advanced loops:

Using a FOR...NEXT Instruction
These statements create loops in which a counter is incremented or decremented
until a specified value is reached. The counter is defined by a FOR statement as
follows:

FOR<counter>=<start value>TO
<final value>[STEP<±interval>]NEXT[<counter>]

All program lines following the FOR statement are executed until a NEXT
statement is encountered. Then the counter (specified by a numeric variable) will be
updated according to the optional STEP value (or by the default value +1) and the
loop is executed again. This is repeated until the final value, as specified by TO
<final value>, is reached. Then the loop is terminated and the execution proceeds
from the statement following the NEXT statement.

FOR...NEXT loops can be nested, which means a loop can contain another loop.
Each loop must have a unique counter designation in the form of a numeric
variable. The NEXT statement makes the execution loop back to the most recent
FOR statement. To loop back to a different FOR statement, the corresponding
NEXT statement must include the same counter designation as the FOR statement.

This example shows how five lines of text entered from the host keyboard can be
printed with an even spacing:

10 FONT “Univers”
20 FOR Y%=220 TO 100 STEP -30
30 LINE INPUT “Type text: ”;TEXT$
40 PRPOS 100, Y%
50 PRTXT TEXT$
60 NEXT
70 PRINTFEED
80 END
RUN

The next example includes two nested FOR...NEXT loops:

10 FOR A%=20 TO 40 STEP 20
20 FOR B%=1 TO 2
30 PRINT A%,B%
40 NEXT : NEXT A%
RUN

This results in:

20 1
20 2
40 1
40 2

This example shows how to create an incremental counter:

10 INPUT “Start Value: ”, A%
20 INPUT “Number of labels: ”, B%
30 INPUT “Increment: ”, C%

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 23

40 X%=B%*C%
50 FOR D%=1 TO X% STEP C%
60 FONT “Univers”,24
70 PRPOS 100,200
80 PRTXT “TEST LABEL”
90 PRPOS 100,100
100 PRTXT “COUNTER: ”; A%
110 PRINTFEED
120 A%=A%+C%
130 NEXT D%
RUN

Using a WHILE...WEND Instruction
This instruction creates loops in which a series of statements are executed provided
a given condition is TRUE.

WHILE is supplemented by a numeric expression that can be either TRUE (-1) or
FALSE (0):

• If the condition is TRUE, all subsequent program lines are executed until a
WEND statement is encountered. The execution then loops back to the WHILE
statement and the process is repeated, provided the WHILE condition still is
TRUE.

• If the WHILE condition is FALSE, the execution bypasses the loop and resumes
at the statement following the WEND statement.

WHILE...WEND statements can be nested. Each WEND statement matches the
most recent WHILE statement.

This example shows a program that keeps running in a loop (line 20-50) until you
press the Y key on the host (ASCII 89 dec.), which makes the WHILE condition
become true.

10 B%=0
20 WHILE B%<>89
30 INPUT “Want to exit? Press Y=Yes or N=No”,A$
40 B%=ASC(A$)
50 WEND
60 PRINT “The answer is Yes”
70 PRINT “You will exit the program”
80 END
RUN

Chapter 2 — Understanding Fingerprint Syntax

24 Fingerprint Developer’s Guide

Structuring Your Program

Use the structure below as a guideline for building your Fingerprint programs.

1 Program Information

• Use REM to comment out items such as program type, version, release date,
and byline.

2 Initiation

Determines how the printer works and branches to subroutines as needed.

• References to subroutines: ON BREAK GOSUB, ON COMSET GOSUB, ON
ERROR GOSUB, ON KEY GOSUB, or other commands as necessary.

• Printer setup: SETUP, OPTIMIZE ON/OFF, LTS& ON/OFF, CUT ON/OFF,
FORMAT DATE$, FORMAT TIME$, NAME DATE$, NAME WEEKDAY$,
SYSVAR, or other commands as necessary.

• Character set and map tables: NASC, NASCD, MAP.

• Enabling keyboard: KEY ON, KEYBEEP, KEYBMAP$.

• Initial LED setting: LED ON/OFF.

• Open “console:” for output: OPEN.

• Assign string variables for each display line: PRINT#.

• Select current directory: CHDIR.

• Select standard I/O channel: SETSTDIO.

• Open communication channels: OPEN.

• Open files: OPEN.

• Define arrays: DIM.

3 Main Loop

Executes the program and keeps it running in a loop.

• Reception of input data: INPUT, INPUT#, INPUT$, LINE INPUT#.

• Printing routine: FORMFEED, PRINTFEED, CUT.

• Looping instructions: GOTO.

4 Subroutines

• Break subroutines: BREAK ON/OFF, BREAK.

• Background communication subroutines: COM ERROR ON, COM ERROR
OFF, COMSET, COMSET ON, COMSET OFF, COMBUF$, COMSTAT.

• Subroutines for key-initiated actions: ON KEY.

• Subroutines for display messages: PRINT#.

• Error handling subroutines: ERR, ERL, PRSTAT.

• Label layout subroutines: PRPOS, DIR, ALIGN, FONT, BARSET, PRTXT,
PRBAR, PRIMAGE, PRBOX, PRLINE, and so on.

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 25

Executing the Program

To start the execution of the program currently residing in the printer working
memory, issue a RUN statement.

By default, program execution starts at the line with the lowest number and
continues in ascending line number order, with the exception of possible loops and
branches. Optionally, you can start execution at a specified line (for example, RUN
40 starts at line 40).

Use an EXECUTE statement to execute a program that is not currently loaded, or to
execute Fingerprint programs from within another Fingerprint program.

When you are connected to the printer through a serial connection, the first error
that stops the execution causes an error message to be returned to the host screen.

In case of program errors, the number of the line where the error occurred is
reported by default (for example ,“Field out of label in line 110”). After the error has
been corrected, the execution must be restarted by means of a new RUN statement,
unless an error-handling routine is included in the program.

Writing, Executing, and Listing a Short Program
Follow the next procedure to write a short Fingerprint program, execute the
program, and list it.

To write, execute, and list a short program

1 Connect the printer to a host PC and start a communications program on the
host PC. For help, see “Sending Fingerprint Commands to the Printer” on
page 3.

2 In a communications program, type NEW and press Enter. The printer returns
“Ok”.

3 Type IMMEDIATE OFF and press Enter. The printer returns “Ok”.

4 Type the following text and press Enter at the end of each line:

REM This is a demonstration program
PRINT “This is the main program”
GOSUB sub1
END
sub1: PRINT “This is a subroutine”:'Line label
RETURN
IMMEDIATE ON

The printer returns “Ok”.

Note: Do not issue a RUN statement on a numbered line, or on a line without a
number in Programming Mode, or a “RUN statement in program” error occurs.

Chapter 2 — Understanding Fingerprint Syntax

26 Fingerprint Developer’s Guide

5 Type RUN and press Enter. The printer executes the program and prints the text
to the communications program window.

6 Type LIST and press Enter. The program is listed with line numbers.

Breaking Program Execution

You may write some programs that start automatically when the printer is turned
on. Because there is no default break facility from the host via any communication
channel, you should always include some break facilities in auto-start programs.

Four instructions can be used for providing a program with a break interrupt
facility:

• BREAK - Specifies an interrupt character.

• BREAK...ON - Enables break interrupt.

• BREAK...OFF - Disables break interrupt.

• ON BREAK...GOSUB... - Branches the execution to a sub-routine when a break
interrupt is executed.

In all break-related instructions, the serial communication channels and the
keyboard are referred to by numbers:

0 = “console:” (the printer keyboard)

1 = “uart1:”

2 = “uart2:”

3 = “uart3:”

BREAK does NOT work on the following channels:

4 “centronics:”

5 “net1:”

6 “usb1:”

Always specify the interrupt character (BREAK) before enabling it in the program
(BREAK...ON).

Using a BREAK Statement
The BREAK statement specifies an interrupt character by its decimal ASCII value.
BREAK can be separately specified for each serial communication channel (except
“net1:” and “usb1:”) and for the printer keypad.

Note: If the startup program is stored on an external device, you can disconnect the
device and restart the printer.

Note: A break interrupt character is saved in the printer temporary memory and is
not removed until the printer is restarted, unless you specifically delete it using a
BREAK...OFF statement for the device.

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 27

The default interrupt character for all serial channels is ASCII 03 dec. (ETX), or
ASCII 158 dec. from the printer keypad (by pressing the Shift and Pause keys
simultaneously).

Using a BREAK...ON or BREAK...OFF Statement
Break interrupt for all serial communication channels is disabled by default, but can
be enabled using a BREAK...ON statement for a specified channel. Break interrupt
from the printer keypad is enabled by default.

The BREAK...OFF statement revokes BREAK...ON for the specified device and
deletes the specified break character from the printer memory.

Using an ON BREAK ...GOSUB...Statement
This instruction is not necessary for issuing a break interrupt, but is useful for
making the printer perform a certain task when a break occurs. For example, when a
break occurs the printer could branch the execution to another part of the program,
show a message in the display, emit a warning signal, or ask for a password.

ON BREAK... GOSUB... can be specified separately for each serial communication
channel and for the printer keypad.

This example shows how a break interrupt occurs when you press the X-key (ASCII
88 dec.) on the host connected to “uart1:”. A signal is emitted and a message appears
in the printer display.

10 BREAK 1,88
20 ON BREAK 1 GOSUB 1000
30 GOTO 50
40 BREAK 1 ON
50 OPEN “console:” FOR OUTPUT AS 1
60 PRINT #1 : PRINT #1
70 PRINT #1, “Press X”
80 PRINT #1, “to break program”;
90 BREAK 1 OFF
100 END
1000 SOUND 880,50
1010 PRINT #1 : PRINT #1
1020 PRINT #1, “PROGRAM”
1030 PRINT #1, “INTERRUPTED”;
1040 RETURN 90
RUN

Saving the Program

Use the SAVE command to save the current program. Programs can be saved in the
printer permanent memory (“/c”) or to a USB storage device (“usb1:”). You can also
save a program in temporary memory (“tmp:”), but the program will be lost at power
off or a power failure. Use the LIST command to list the program back to the host in
order to make a backup copy.

Note: A break interrupt character is saved in the printer temporary
memory, and will not be removed until the printer is restarted, unless
you specifically delete it using a BREAK...OFF statement for the device
in question.

Chapter 2 — Understanding Fingerprint Syntax

28 Fingerprint Developer’s Guide

For more information on printer memory, see “About Printer Memory” on
page 119.

Naming the Program
When you save a program for the first time, you must give it a name consisting of up
to 30 characters including the file extension.

The filename can be specified in either uppercase or lowercase characters, but
lowercase characters are automatically converted to uppercase when the program is
saved.

If you omit the extension, Fingerprint automatically adds the extension “.PRG”. If
you plan to transfer the program file to a host platform, you need to consider
conventions and restrictions imposed by the host operating system when you name
the program.

The automatic case conversion and adding of the extension can be disabled using
SYSVAR(43). For help, see “Using the SYSVAR System Variable” on page 116.

Examples:

SAVE “PROGRAM1”

saves the program as PROGRAM1.PRG in the current directory (by default “/c”).

SAVE “program2”

saves the program as PROGRAM2.PRG in the current directory.

SAVE “usb1:PROGRAM1.TXT”

saves the program as PROGRAM1.TXT to a USB storage device connected to the
printer.

Protecting the Program
When a program is saved, you have the option to also protect it, meaning that it
cannot be listed after being loaded and program lines cannot be changed, added, or
deleted. Once a program has been protected, it cannot be unprotected, so you
should make an non-protected backup copy to use if you need to make any changes
later.

The next example saves and protects the current program as PROGRAM1.PRG in
the current directory:

SAVE “PROGRAM1.PRG”,P

Saving Without Line Numbers
A program can also be saved without line numbers to make it easier to MERGE it
with another program without the risk of interfering line numbers. Both programs
should make use of line labels for referring to other lines, such as loops and
branching instructions.

The next example saves the current program as PROGRAM1.PRG without line
numbers in the current directory:

SAVE “PROGRAM1.PRG”,L

Chapter 2 — Understanding Fingerprint Syntax

Fingerprint Developer’s Guide 29

Making Changes
If you LOAD a program, make changes, and then SAVE the program under the
original name and in the original directory, the original program will be replaced.

The next example changes the value of a variable in line 50, and replaces the original
version with the new version:

LOAD “PROGRAM1.PRG”
50 A%=300
SAVE “PROGRAM1.PRG”

Making Copies of Programs
The easiest way to copy a program is to use a COPY statement. Optionally, you can
include directory references in the statement.

The next example copies a program from the permanent memory to a memory card,
and gives the copy a new name:

COPY “/c/FILELIST.PRG”,“card1:COPYTEST.PRG”

If you LOAD a program and then SAVE it under a new name or in another directory,
you will create a copy of the original program.

The next example creates a copy of the program LABEL1.PRG and gives the copy the
name LABEL2.PRG:

LOAD “LABEL1.PRG”
SAVE “LABEL2.PRG”

Renaming a Program
To rename a program (or any other file), LOAD it, SAVE it under a new name, and
finally KILL the original program.

Example (renames LABEL1.PRG with the name LABEL2.PRG):

LOAD “LABEL1.PRG”
SAVE “LABEL2.PRG”
KILL “LABEL1.PRG”

Creating a Startup Program
The MKAUTO.PRG program is used to create autoexec.bat-files, which are
programs that are loaded and run automatically as soon as the power is switched on
and the printer is initialized. Usually, a startup program contains some kind of loop
which makes it run infinitely, awaiting some input or action from the operator.

There can be one startup file stored in each of three main parts of the printers
memory. If there are more startup files, only one will be selected based on the
following priority:

1 An AUTOEXEC.BAT file stored in a CompactFlash memory card, provided the
card was inserted in the printer before startup.

2 An AUTOEXEC.BAT file stored in the read/write part of the printer permanent
memory (device “/c”).

Chapter 2 — Understanding Fingerprint Syntax

30 Fingerprint Developer’s Guide

3 The PUP.BAT file (Intermec Shell) in the read-only part of the printer permanent
memory (device “/rom”).

The MKAUTO.PRG program is included in the systems part of the printer memory
(“/rom/MKAUTO.PRG”) and consists of the following lines:

10 OPEN “AUTOEXEC.BAT” FOR OUTPUT AS 1
20 INPUT “startup file name:”,S$
30 PRINT#1,“RUN”;CHR$(34);S$;CHR$(34)
40 CLOSE1

Follow the next procedure to create a startup program from an ordinary program:

To create a startup program

1 Connect the printer to a host PC and start a communications program on the
host PC. For help, see “Sending Fingerprint Commands to the Printer” on
page 3

2 Write and test your program.

3 Type SAVE “MyFileName” and then press Enter. The printer returns “Ok”.

4 Type RUN “/rom/MKAUTO” and then press Enter. The printer returns:

Startup file name:

5 Type the name of the program you just saved (with or without the extension
.PRG) and then press Enter. The printer returns “Ok”.

Your program has been saved as a startup program in the current directory.
When you restart the printer, the new startup program will start running,
provided there is no other startup program with higher priority as described
earlier.

6 (Optional) To undo the operation, type KILL “AUTOEXEC.BAT” and press
Enter.

This will not erase the original program, but it will no longer be used as a startup
program. Note that you cannot KILL startup programs stored in “/rom”.

31

3
Managing Files

This chapter describes a Fingerprint printer file system and how to manage
files, including these sections:

• Using Directories in the Printer File System

• About File Types

• Commands for Creating and Managing Program Files

• Commands for Creating and Managing Data Files

• Commands for Transferring Text and Binary Files

• Commands for Transferring Files Between Printers

• Commands for Working With Arrays

Chapter 3 — Managing Files

32 Fingerprint Developer’s Guide

Using Directories in the Printer File System

The read-only memory (/rom) and the read/write permanent storage memory (/c) in
the printer support the use of directories. However, directories cannot be used in any
other parts of the memory.

Use a slash character (/) to separate directories and files, as in the path “/c/DIR1/
DIR2/FILE”. The maximum length of a path is 255 characters. Use the slash only to
indicate directories in /c or /rom, as other memory partitions (such as “net1:”) do
not support directories.

These Fingerprint commands are used when working with directories:

• MKDIR creates a new directory in the printer permanent memory.

• CURDIR$ returns the current directory as the printer stores it.

• DIRNAME$ returns the directory names in a specified part of printer memory.

The FILES command gives a size of 0 for directories to minimize impact on
applications that parse the output.

The FILENAME$ function only reports files to minimize impact on applications
that use FILENAME$ to get file listings.

Using Path Shortcuts
As a shortcut, each directory (including the root directories) contains a “parent
directory”. Use two periods (..) to change to the parent directory. Send the FILES,A
command to list the files in the parent directory.

Each directory also has a reference to itself (“.”), that is, “/c/./DIR1/./../ FILE” refers
to “/c/FILE” (or, using the legacy format, to “c:FILE”).

Example:

Note: For backward compatibility, “c:” is equivalent to “/c”, and “rom:” is equivalent
to “/rom”. New applications should always use “/rom” or “/c”.

Note: For more information on commands, see the Fingerprint Command Reference
Manual.

CHDIR “/c/DIR1/DIR2” Changes the current directory.

COPY “../DIR3/FILE”, “FILE” Copies /c/DIR1/DIR3/FILE to
/c/DIR1/DIR2/FILE.

CHDIR “..” Goes up to “/c/DIR1”.

CHDIR “../” Goes up to /c. Note that a trailing slash
can be used.

Note: While a file or directory name can contain all printable characters except “:”
(colon) and “/” (slash), only “/c” supports using directories.

http://epsfiles.intermec.com/eps_files/eps_man/1-960597-06%20PRM%20DP%208.60.pdf

http://epsfiles.intermec.com/eps_files/eps_man/1-960597-06%20PRM%20DP%208.60.pdf

Chapter 3 — Managing Files

Fingerprint Developer’s Guide 33

About File Types

Four types of files can be stored in the various parts of the printer memory:

• Program files

• Data files

• Image files. For more information, see “Understanding Images and Image
Files” on page 70.

• Font files. For more information, see “Managing Fonts” on page 66.

Commands for Listing Files
The files stored in the printer memory can be listed using a FILES statement or a
FILENAME$ function, as in these examples:

FILES,A lists all files in the current directory.

FILES “/c”,A lists all files in the read/write part of the permanent memory

FILES “/c”,R,A lists all files in the read/write part of the permanent memory
recursively.

FILES “/rom” lists all files stored in the read-only part of the permanent
memory, except files preceded by a period character.

FILENAME$(“/c”) returns all files in the read/write part of the permanent
memory (wildcards are supported).

You can COPY a file to the standard OUT channel, where it will be printed on the
screen of the host, for example:

COPY “[device]filename”, “uart1:”

Listing a File With the FILELIST Program
The FILELIST.PRG program included in the Intermec Fingerprint firmware is used
to LIST a line-oriented file to the standard OUT channel.

To list a file

1 On your terminal, enter:

RUN “/rom/FILELIST.PRG”

The printer prompts you to enter the name of the file to be listed:

Filename?

2 Enter the filename, possibly preceded by a directory reference, for example:

“/c/*.*”

3 Press Enter. The file is listed.

Chapter 3 — Managing Files

34 Fingerprint Developer’s Guide

Commands for Creating and Managing Program Files

Program files are used to run and control the printer and to produce labels or other
printouts. A program file is always composed of numbered lines, although the
numbers may be invisible during the editing process. For more information, see
“About Programming Mode” on page 13.

A startup file (also called an autoexec-file) is a program file that automatically runs
when the printer is switched on. For more information, see “Creating a Startup
Program” on page 29.

Use these Fingerprint commands for creating and handling program files:

• LOAD copies a specified program file to the printer working memory.

• LIST lists the program file in the working memory to the standard OUT channel,
usually the screen of the host.

• MERGE adds a copy of a specified program file to the program file currently
residing in the printer working memory.

• RUN executes the instruction in the program file. Must be issued in Immediate
Mode (not in a numbered line.)

• SAVE saves a copy of the program file in the current directory or, optionally, in
another specified directory. If a file with the same name already exists in that
directory, it is replaced by the new file.

• NEW clears the working memory to allow a new program file to be created.

• COPY copies a file to another name and/or directory.

• KILL deletes a file.

Commands for Creating and Managing Data Files

Data files are used by program files for storing various types of data and can be
divided into several subcategories:

• Sequential input files

• Sequential output files

• Append files

• Random access files

Use these Fingerprint commands for creating and handling data files:

• OPEN creates and/or opens a file for a specified mode of access and optionally
specifies the record size in bytes.

• CLOSE closes an opened file.

• REDIRECT OUT creates a file to which the output data will be redirected.

• TRANSFERSET sets up the transfer of data between two files.

• TRANSFER$ executes the transfer of data between two files according to
TRANSFERSET.

• COPY copies a file to another name and/or directory.

Chapter 3 — Managing Files

Fingerprint Developer’s Guide 35

• KILL deletes a file.

• LOC returns the position in an opened file.

• LOF returns the length in bytes of an opened file.

Commands for Transferring Text and Binary Files

You can use these methods to transfer files:

• PrintSet

• the printer web page

• a USB storage device

• FTP

• SmartSystems

Text files (such as program files and data files in ASCII format) can be sent to the
printer using a communication program. Text files can also be transferred back to
the host, such as for backup purposes, by loading the file and using the LIST
command to send its contents to a communication program.

For binary files, you can also use the TRANSFER KERMIT and ZMODEM
commands.

Using the TRANSFER KERMIT Statement
The TRANSFER KERMIT statement allows you to specify direction (Send or
Receive), file name, input device, and output device. By default, a file name
designated “KERMIT.FILE” will be transferred on the standard IN or OUT channel.

In this example, the printer is set up to receive a file on the standard IN channel:

TRANSFER KERMIT “R”

Using the ZMODEM Protocol
Files can be sent from host to printer (or vice versa) with the ZMODEM protocol.
For more information, see the Fingerprint Command Reference Manual.

Using a TRANSFER STATUS Statement
After a file has been transferred using a TRANSFER KERMIT or TRANSFER
ZMODEM statement, the transfer can be checked using the TRANSFER STATUS
statement. The statement places the result into two one-dimensional arrays:

5-element numeric array (requires a DIM statement)

Element 0 returns: Number of packets

Element 1 returns: Number of NAKs

Note: There is a 30 second timeout between the issuing of the TRANSFER KERMIT
“R” statement and the start of the transmission.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 3 — Managing Files

36 Fingerprint Developer’s Guide

Element 2 returns: ASCII value of last character

Element 3 returns: Last error

Element 4 returns: Block check type used

2-element string array (requires no DIM stmt)

Element 0 returns: Type of protocol: “KERMIT” or “ZMODEM”

Element 1 returns: Last file name received

Example:

10 TRANSFER KERMIT “R”
20 DIM A%(4)
30 TRANSFER STATUS A%,B$
40 PRINT A%(0), A%(1), A%(2), A%(3), A%(4)
50 PRINT B$(0), B$(1)
RUN

Commands for Transferring Files Between Printers

If you want to transfer a file from one printer to another printer, start by
transferring the file to the host. Then disconnect the first printer and download the
file to the second printer (or have the two printers connected to separate serial
ports). After the transfer, check if the transfer was successful by comparing the
result of CHECKSUM functions on both printers.

Checking Transferred Files With CHECKSUM
Calculate the CHECKSUM on the program in the transmitting printer before the
transfer. After the transfer is completed, LOAD the program in the receiving printer
and perform the same calculation. If the checksums are identical, the transfer was
successful.

In this example, the checksum in the lines 10 to 90,000 of a program is calculated:

“DEMO.PRG.”
LOAD “DEMO.PRG”
PRINT CHECKSUM (10,90000)

Commands for Working With Arrays

Variables containing related data may be organized in arrays. Each value in an array
is called an element. The position of each element is specified by a subscript, one for
each dimension (maximum 10.) Each array variable consists of a name and a
number of subscripts, separated by commas, and enclosed by parentheses, as in this
example:

ARRAY$(3,3,3)

Note: Do not confuse CHECKSUM with CSUM. For more information, see
“Commands for Working With Arrays” on page 36.

Chapter 3 — Managing Files

Fingerprint Developer’s Guide 37

The first time an array is referred to, the number of subscripts in an array variable
decides its number of dimensions. The number of elements in each dimension is
restricted to four (numbered 0 to 3) by default.

There are four commands that are particularly relevant for working with arrays:

• DIM specifies the size of an array in regard of elements and dimensions.

• SORT sorts the elements in a one-dimensional array in ascending or descending
order.

• SPLIT splits a string into an array.

• CSUM returns the checksum for a string array.

Specifying Array Dimensions Using DIM
If more than four elements are needed, or to limit the size of the array, use a DIM
statement to specify the number of dimensions as well as the number of elements in
each dimension.

This example shows how three 1-dimensional, 5-element arrays can be used to
return 125 possible combinations of text strings:

10 DIM TYPE$(4),COLOUR$(4),SIZE$(4)20, TYPE$(0)=“SHIRT”
30 TYPE$(1)=“BLOUSE”
40 TYPE$(2)=“TROUSERS”
50 TYPE$(3)=“SKIRT”
60 TYPE$(4)=“JACKET”
70 COLOUR$(0)=“RED”
80 COLOUR$(1)= “GREEN”
90 COLOUR$(2)=“BLUE”
100 COLOUR$(3)=“RED”
110 COLOUR$(4)=“WHITE”
120 SIZE$(0)= “EXTRA SMALL”
130 SIZE$(1)=“SMALL”
140 SIZE$(2)=“MEDIUM”
150 SIZE$(3)=“LARGE”
160 SIZE$(4)=“EXTRA LARGE”
170 INPUT“Select Type (0-4): ”, A%
180 INPUT“Select Color (0-4): ”, B%
190 INPUT“Select Size (0-4): ”, C%
200 PRINT TYPE$(A%)+ “, ”+COLOUR$(B%)+“, ”+SIZE$(C%)
RUN

Sorting Arrays
The SORT statement sorts a one-dimensional array in ascending or descending
order according to the ASCII values for the character in the Roman 8 character set.
You can also choose between sorting the complete array or a specified interval. For
string arrays, you can select by which character position the sorting is performed.

This example shows how one numeric array is sorted in ascending order and one
string array is sorted in descending order according to the fifth character in each
element:

10 FOR Q%=0 TO 3
20 A$=STR$(Q%)
30 ARRAY%(Q%)=1000+Q%:ARRAY$(Q%)=“No. ”+A$
40 NEXT Q%
50 SORT ARRAY%,0,3,1

Chapter 3 — Managing Files

38 Fingerprint Developer’s Guide

60 SORT ARRAY$,0,3,-5
70 FOR I%=0 TO 3
80 PRINT ARRAY%(I%), ARRAY$(I%)
90 NEXT I%
RUN

The printer returns:

1000 No. 3
1001 No. 2
1002 No. 1
1003 No. 0

Splitting String Expressions
The SPLIT function splits a string expression into elements in an array and to return
the number of elements. A specified character indicates where the string will be split.

In this example a string expression is divided into six parts by the separator
character “/” (ASCII 47 dec.) and arranged in a six-element array:

10 A$=“ONE/TWO/THREE/FOUR/FIVE/SIX”
20 X$=“ARRAY$”
30 DIM ARRAY$(5)
40 B%=SPLIT(A$,X$,47)
50 FOR C%=0 TO (B%-1)
60 PRINT ARRAY$(C%)
70 NEXT
RUN

The printer returns:

ONE
TWO
THREE
FOUR
FIVE
SIX

Calculating String Array Checksums
The checksum for string arrays can be calculated according to one of three different
algorithms and returned using the CSUM statement.

In this example, the checksum of a string array is calculated according both to the
LRC (Logitudinal Redundancy Check) and the DRC (Diagonal Redundancy Check)
algorithms:

10 FOR Q%=0 TO 3
20 A$=STR$(Q%)
30 ARRAY$(Q%)=“Element No. ”+A$
40 NEXT
50 CSUM 1,ARRAY$,B%:PRINT “LRC checksum: ”;B%
60 CSUM 2,ARRAY$,C%:PRINT “DRC checksum: ”;C%
RUN

The printer returns:

LRC checksum: 0
DRC checksum: 197

Note: Do not confuse CSUM with CHECKSUM. For help, see “Checking
Transferred Files With CHECKSUM” on page 36.

39

4
Managing Input and Output

This chapter explains how to manage input and output data for Fingerprint
applications, and includes these topics:

• Preprocessing Input Data

• Converting Input Data

• Generating Random Numbers

• Setting the Standard IN and OUT Channels

• Input From a Host

• Input From Sequential Files

• Input From a Random File

• Input From the Printer Keypad

• Controlling Communication

• Managing Background Communication

• Output to the Standard OUT Channel

• Redirecting Output to a File

• Output to Sequential Files

• Output to Random Files

• Output to Communication Channels

• Output to the Printer Display

Chapter 4 — Managing Input and Output

40 Fingerprint Developer’s Guide

Preprocessing Input Data

All input data comes to the printer in binary form. Text files are transmitted in
ASCII format and preprocessed by the printer firmware. These Fingerprint
commands can be used to provide file compatibility between the printer and the
host:

• MAP

• NASC

A character received by the printer on a communication channel is first processed as
directed by any included MAP statements. Then the character is checked for any
COMSET or ON KEY... GOSUB conditions. When a character is to be printed, it is
processed according to the character set selected using a NASC statement.

Modifying Character Sets Using a MAP Statement
The MAP statement is used to modify a character set or to filter out undesired
characters on a specified communication channel by mapping them as NUL (ASCII
0 dec.) If no character set meets your requirements, select the set that comes closest
and modify it using MAP statements.

For a list of character sets and the corresponding reference numbers, see Fingerprint
Command Reference Manual.

For example, you may want to use the German character set (49) and 7 bit
communication protocol. However, you need to print £ characters, but have no need
for the § character. Then remap the £ character (ASCII 187 dec.) to the value of the §
character (ASCII 64 dec.) Type a series of § characters on the keyboard of the host
and finish with a carriage return:

10 NASC 49
20 MAP 64,187
30 FONT “Univers”
40 PRPOS 100,100
50 INPUT “Enter character”;A$
60 PRTXT A$
70 PRINTFEED
RUN

The printer returns:

Enter character?

Note: Do not map any characters to ASCII values occupied by characters used in
Fingerprint instructions (such as keywords, operators, %, $, #, and certain
punctuation marks). Mapped characters are reset to normal at power-up or reboot.

Note: When using 7 bit communications, the printer cannot echo back the correct
character to the host if its ASCII value exceeds 127. Although semicolon characters
appear onscreen, the desired “£” characters are printed on the label.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 41

Choosing a Character Set with a NASC Statement
The NASC statement is used to select a single- or double-byte character set, making
it possible to adapt the printer to various national standards. By default, characters
are printed according to the Roman 8 character set.

Fingerprint supports right-to-left and bidirectional text, as well as cursive glyphs,
character shaping, and connecting headstrokes. You must specify a valid font and
character set for your current language when printing complex scripts. You can use
any TrueType® font (or TrueType-formatted OpenType® font) with your printer,
and you can purchase additional fonts from Monotype at www.fonts.com.

While most alphanumeric characters and punctuation marks are the same from set
to set, many international characters and symbols are different. For example, the
ASCII 124 character is “|” according to the Roman 8 character set, “ù” according to
the French character set, and “ñ” according to the Spanish set.

If no character set matches your requirements exactly, select the one that comes
closest. Then, you can make final corrections using MAP statements as described in
the previous section.

Using a NASC statement has the following consequences:

• Text is printed according to the selected character set. However, instructions
concerning the printable label image that have already been processed before the
NASC statement are not affected. You can use this to print multilingual labels.

• New messages on the display are affected by the most recent NASC statement.
However, a message that is already displayed is not be updated automatically.
The display can show most printable Latin characters. In Setup mode, all
characters are mapped according to the US-ASCII standard.

• Data transmitted from the printer via any of the communication channels is not
affected, since the data is defined by ASCII values and not as alphanumeric
characters. The active character set of the receiving unit determines the graphic
presentation of the input data (for example, on the screen of the host).

• For bar code printing, the pattern of the bars reflects the ASCII values of the
input data and is not affected by a NASC statement. The bar code interpretation
(the human readable characters below the bar pattern) is affected by a NASC
statement. However, the interpretation of bar codes that have been processed
and stored in the print buffer is not affected.

This example selects the Italian character set:

NASC 39

http://www.fonts.com/

Chapter 4 — Managing Input and Output

42 Fingerprint Developer’s Guide

Converting Input Data

These Fingerprint commands are used to convert data in numeric or string
expressions:

• ABS returns the absolute value of a numeric expression.

• ASC returns the ASCII value of the first character in a string expression.

• CHR$ returns the readable character of a specified ASCII value. This is useful
when a printer keyboard cannot produce a particular character.

• FLOATCALC$ calculates float numbers using arithmetic operators.

• FORMAT$ formats a number represented by a string and is typically used with
FLOATCALC$.

• INSTR searches a string for a specific character or string of characters and
returns its position if found.

• LEFT$ returns a specified number of characters from the beginning (left end) of
a string.

• LEN returns the total number of characters and spaces in a string expression.

• MID$ returns a portion of a string expression. You can specify the start position
and the number of characters to return.

• RIGHT$ returns a specified number of characters from the end (right side) of a
string.

• SGN returns the sign of a numeric expression.

• SPACE$ returns a specified number of space characters. This command is useful
for creating tables with monospace characters.

• STR$ returns the string representation of a numeric expression.

• STRING$ returns a specified number of a single character specified by its ASCII
value.

• VAL$ returns the numeric representation of a string expression. This is typically
used with random files, which only accept strings.

Note: Commands ending in $ typically return a string.

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 43

Generating Random Numbers

The Fingerprint commands RANDOM and RANDOMIZE are used to generate
random numbers for test programs or other applications.

Calling the RANDOM Function
The RANDOM function generates a random integer within a specified interval.

This example tests a random dot on the printhead of a 12 dots/mm printer:

10 MIN%=HEAD(-7)*85\100: MAX%=HEAD(-7)*115\100
20 DOTNO%=RANDOM(0,1279)
30 IF HEAD(DOTNO%)<MIN% OR HEAD(DOTNO%)>MAX% THEN
40 BEEP
50 PRINT “ERROR IN DOT ”; DOTNO%
60 ELSE
70 BEEP
80 PRINT “HEADTEST: OK!”
90 END IF
RUN

Using a RANDOMIZE Statement
To obtain a higher degree of randomization, the random number generator can be
reseeded using the RANDOMIZE statement. You can either include an integer with
which the generator will be reseeded, or a prompt will appear asking you to do so.

This example prints a random pattern of dots after the random number generator
has been reseeded:

10 RANDOMIZE
20 FOR Q%=1 TO 100
30 X%=RANDOM(50,400)
40 Y%=RANDOM(50,400)
50 PRPOS X%,Y%
60 PRLINE 5,5
70 NEXT
80 PRINTFEED
RUN

The printer returns:

Random Number Seed (0 to 99999999) ? (prompt)

For a higher degree of randomization, you can reseed the random integer generator
with another random integer provided by a function such as TICKS:

10 A%=TICKS
20 RANDOMIZE A%
30 B%=RANDOM(1,100)
40 PRINT B%
RUN

The printer returns:

42

Chapter 4 — Managing Input and Output

44 Fingerprint Developer’s Guide

Setting the Standard IN and OUT Channels

The standard IN and standard OUT channels are the channels for input to the
printer and output from the printer respectively. The default setting for both is
“auto”, which means that all communication channels are scanned for input. In
most Fingerprint commands, you can override the standard IN or OUT channel by
specifying other channels.

You can configure any of the following communication channels as standard IN
and/or standard OUT channel using the SETSTDIO statement. The next table lists
valid values for SETSTDIO.

Input From a Host

The following Fingerprint commands can receive input from any communication
channel:

• OPEN

• INPUT#

• INPUT$

• LINE INPUT#

• CLOSE

The standard IN channel is used for sending instructions and data from the host to
the printer to perform a variety of tasks, such as controlling the printer in
Immediate Mode, creating programs in Programming Mode, downloading program
files, or transmitting input data.

The following Fingerprint commands receive data only on the standard IN channel:

• INKEY$

• INPUT

• LINE INPUT

SETSTDIO Values

Value Standard IN Channel Standard OUT Channel

0 “console:” “console:”

1 “uart1:” “uart1:”

2 “uart2:” “uart2:”

3 “uart3:” “uart3:”

4 “centronics:” Not applicable.

5 “net1:” “net1:”

6 “usb1:” “usb1:”

100 100 = “auto” (default) 100 = “auto” (default)

Note: Do not choose “console:” for both the standard IN and OUT channels, which
makes only characters entered on the printer keypad appear in the display.

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 45

Input From Sequential Files

To read from a sequential file (or a communication channel other than the std IN
channel), the file must be opened for input and assigned a number, which is used
when referred to in other instructions. The number mark (#) is optional. Up to 10
files and devices can be open at the same time.

In this example, the file “ADDRESSES” is opened for input as number 1:

OPEN “ADDRESSES” FOR INPUT AS #1

After a file or device has been opened for input, use these Fingerprint commands to
read the data stored in the file or device:

• INPUT#

• INPUT$

• LINE INPUT#

• CLOSE

Reading Data to a Variable With INPUT#
INPUT# reads a string of data to a variable. Commas can be used to assign portions
of the input to different variables. When reading from a sequential file, the records
can be read one after the other by repeated INPUT# statements.

The records are separated by commas in the string. Once a record has been read, it
cannot be read again until the file has been closed and then opened again.

This example reads six records in a file and places the data in six variables:

10 OPEN “QFILE” FOR OUTPUT AS #1
20 PRINT #1, “Record A”,“a”,“b”,“c”
30 PRINT #1, “Record B”,1,2,3
40 PRINT #1, “Record C”,“x”;“y”;“z”
50 PRINT #1, “Record D,Record E,Record F”
60 CLOSE #1
70 OPEN “QFILE” FOR INPUT AS #1
80 INPUT #1, A$
90 INPUT #1, B$
100 INPUT #1, C$
110 INPUT #1, D$,E$,F$
120 PRINT A$
130 PRINT B$
140 PRINT C$
150 PRINT D$
160 PRINT E$
170 PRINT F$
180 CLOSE #1
RUN

The printer returns:

Record A a b c
Record B 1 2 3
Record C xyz
Record D
Record E
Record F

Chapter 4 — Managing Input and Output

46 Fingerprint Developer’s Guide

Reading a Specific Data Length With INPUT$
INPUT$ reads a specified number of characters from the specified sequential file or
channel. By default, if no file or channel is specified, the data on the standard IN
channel is read.

The execution is held up waiting for the specified number of characters to be
received. If a file does not contain as many characters as specified in the INPUT$
statement, the execution resumes as soon as all available characters in the file have
been received.

Sequential files are read from the start and once a number of characters has been
read, they cannot be read again until the file is closed and opened again. Subsequent
INPUT$ statements start with the first of the remaining available characters.

Example (reads portions of characters from a file OPENed as #1):

10 OPEN “QFILE” FOR OUTPUT AS #1
20 PRINT #1, “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
30 CLOSE #1
40 OPEN “QFILE” FOR INPUT AS #1
50 A$=INPUT$(10,1)
60 B$=INPUT$(5,1)
70 C$=INPUT$(100,1)
80 PRINT “Record 1:”,A$
90 PRINT “Record 2:”,B$
100 PRINT “Record 3:”,C$
110 CLOSE #1
RUN

The printer returns:

Record1: ABCDEFGHIJ
Record2: KLMNO
Record3: PQRTSUVWXYZ

Reading a Line to a Variable With LINE INPUT#
This command reads an entire line (including all punctuation) to a string variable.
Commas inside a string are treated as punctuation marks and do not divide the
string into records.

This example reads a complete line in a file and places the data in a “single-string”
variable):

10 OPEN “QFILE” FOR OUTPUT AS #1
20 PRINT #1, “Record A,Record B,Record C”
30 CLOSE #1
40 OPEN “QFILE” FOR INPUT AS #1
50 LINE INPUT #1, A$
60 PRINT A$
70 CLOSE #1
RUN

The printer returns:

Record A,Record B,Record C

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 47

Close a File
When a file is no longer used, it can be closed using a CLOSE statement containing
the same reference number as the corresponding OPEN statement. An END
statement also closes all open files.

Verify the End of a File With EOF
The EOF function is used in connection with INPUT#, LINE INPUT#, or INPUT$
statements to avoid the “Input past end” error condition.

When the EOF function encounters the end of a file, it returns the value -1 (TRUE.)
If not, it returns the value 0 (FALSE).

The next example shows how to use EOF:

10 DIM A%(10)
20 OPEN “DATA” FOR OUTPUT AS #1
30 FOR I%=1 TO 10
40 PRINT #1, I%*1123
50 NEXT I%
60 CLOSE #1
70 OPEN “DATA” FOR INPUT AS #2
80 I%=0
90 WHILE NOT EOF(2)
100 INPUT #2, A%(I%):PRINT A%(I%)
110 I%=1+1:WEND
120 IF EOF(2) THEN PRINT “End of File”
RUN

Counting Data Blocks with LOC
LOC returns the number of 128-byte blocks that have been read or written since the
file was OPENed. This example closes the file “ADDRESSES” when record number
100 has been read from the file:

10 OPEN “ADDRESSES” FOR INPUT AS #1
.....
.....
.....
200 IF LOC(1)=100 THEN CLOSE #1
.....
.....

Determining File Length with LOF
The LOF function returns the length in bytes of an OPENed file.

The example illustrates how the length of the file “PRICELIST” is returned:

10 OPEN “PRICELIST” AS #5
20 PRINT LOF(5)
.....
.....

Chapter 4 — Managing Input and Output

48 Fingerprint Developer’s Guide

Input From a Random File

To read the data stored in a random file, you must open it.

This section uses the random file created in “Generating Random Numbers” on
page 43, which can be illustrated as follows:

10 OPEN “ZFILE” AS #1 LEN=14

LEN=14 refers to the length of each record, which is 14 bytes (4 + 4 + 6). Do not
confuse the LEN parameter in the OPEN statement with the LEN function. For
more information, see “Converting Input Data” on page 42.

The following Fingerprint commands are used in connection with input from
random files:

• FIELD

• GET

• CLOSE

• LOC

• LOF

Creating a Buffer with FIELD
A FIELD statement is used to create a single-record buffer for a random file, and
divides the buffer into fields. Each field can be assigned a string variable.

Using the random file example, the following code chooses Field #1, and assigns the
first 4 bytes to the string variable F1$, the second 4 bytes to F2$, and the remaining
6 bytes to F3$:

20 FIELD#1, 4 AS F1$, 4 AS F2$, 6 AS F3$

Copying a Specific Field with GET
A GET statement copies the desired record from the file. You can select any record
(as opposed to sequential files, where records are read one after the other). For this
example, we will copy the first record:

30 GET #1,1

You can copy data from other records in the same file by issuing additional GET
statements.

Now you can use the variables assigned to the fields using the FIELD statement to
handle the data. Numeric expressions converted to string format before being put
into the record can now be converted back to numeric format using VAL functions.
In this example, the following code displays the data on the host screen:

40 PRINT F1$,F2$,F3$

1 2 3

1 2 3Field:

Record:

Byte:

1 2 3 1 2 3

1 2 3 4 5 61 2 3 4 1 2 3 4 1 2 3 4 5 61 2 3 4 1 2 3 4 1 2 3 4 5 61 2 3 4 1 2 3 4

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 49

Closing a File
Finally, close the file and execute:

50 CLOSE #1
RUN

The printer returns:

ABC DEF 123456

Finding the Last Field Read with LOC
LOC returns the number of the last record read by the use of GET statement.

This example closes the file “ADDRESSES” when record number 100 has been read
from the file:

10 OPEN “ADDRESSES” AS #1
.....
.....
.....
200 IF LOC(1)=100 THEN CLOSE #1
.....
.....

Determining File Length with LOF
The LOF function returns the length in bytes of an OPENed file. The example
illustrates how the length of the file “PRICELIST” is returned:

10 OPEN “PRICELIST” AS #5
20 PRINT LOF(5)
.....
.....

Input From the Printer Keypad

The input that can be provided from the printer keypad depends on your printer
model and options.

The following Fingerprint commands are used in connection with input from the
printer keyboard:

• OPEN (opens the device “console:” for sequential INPUT)

• INPUT#

• INPUT$

• LINE INPUT#

• CLOSE

The printable characters actually generated by the respective ASCII value depend on
the selected character set (NASC/NASCD) and possible MAP statements.

Note: This section does not apply to keypad input for ON KEY...GOSUB statements
and vice versa.

Chapter 4 — Managing Input and Output

50 Fingerprint Developer’s Guide

In case of INPUT# and LINE INPUT#, the input is not accepted until a carriage
return is issued.

This example demonstrates how the printable character and decimal ASCII value of
various keys on the printer keyboard can be printed to the screen of the host.

10 PRINT “Character”, “ASCII value”
20 OPEN “console:” FOR INPUT AS 1
30 A$=INPUT$(1,1)
40 B%=ASC(A$)
50 PRINT A$, B%
60 GOTO 30
70 CLOSE 1
RUN

Controlling Communication

The following Fingerprint commands are used to control the communication
between the printer and the host (or other connected devices):

• BUSY

• READY

• ON | OFF LINE

• VERBON | VERBOFF

• SYSVAR(18)

Using BUSY or READY Statements
Using these two statements, you can let the program execution turn a selected
communication channel on or off. There is a difference between serial and parallel
communication:

• For serial communication, the type of busy/ready signal is decided in the Setup
Mode (Ser-Com; Flowcontrol):

• When a BUSY statement is executed, the printer sends a busy signal (for
example, XOFF or RTS/CTS low).

• When a READY statement is executed, the printer sends a ready signal (for
example XON or RTS/CTS high).

For more information, see the printer user’s guide.

• The parallel Centronics communication channel uses the BUSY/READY
statements to control the PE (paper end) signal on pin 12:

• BUSY = PE high

• READY = PE low

The status of the PE signal can be read by a PRSTAT statement, as in this
example:

IF (PRSTAT AND 4) GOTO.....ELSE GOTO.....

Note: Issuing a READY statement is no guarantee that the printer will receive data.
There may be other conditions that prevent the printer from receiving data, such as a
full receive buffer.

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 51

Using an ON LINE | OFF LINE Statement
These two statements are only used for the parallel Centronics communication
channel and control the SELECT signal (pin 13 on the parallel interface board).

Controlling Printer Response with VERBON | VERBOFF
These commands control the printer verbosity, which refers to the printer response
(on the standard OUT channel) to instructions received on the standard IN channel:

By default, verbosity is on (VERBON) in Fingerprint, but off (VERBOFF) in the
Direct Protocol. The verbosity level is controlled by the system variable SYSVAR(18).

All responses are suppressed when a VERBOFF statement is issued. However,
VERBOFF does not suppress question marks or other prompts displayed as a result
of another command, such as an INPUT statement. Instructions like DEVICES,
FILES, FONTS, IMAGES, LIST and PRINT also work normally.

When the printer receives a character, such as from the host keyboard, the same
character is echoed back on the standard OUT channel by default. When an
instruction has been checked for syntax errors and accepted, the printer returns
“Ok”. Otherwise an error message is returned.

This example demonstrates how the printer is set to only return “Ok” after correct
lines (2) or error messages after failed lines (8):

SYSVAR(18) = 10

Managing Background Communication

Background communication means that the printer receives data on an IN channel
while the program runs in a loop. The data is stored in a buffer that can be emptied
at an appropriate moment by the running program, which then uses the data.

Background communication buffers are not the same as the receive buffers. Any
input received is first stored in the channel receive buffer, awaiting processing. After
processing, you can store the data in the background communication buffer.

The following Fingerprint commands are used in connection with background
communication:

• COMSET sets the background reception parameters, including:

• communication channel.

• start and end character(s) of message string.

• characters to be ignored.

• attention string that interrupts reception.

• maximum number of characters to be received.

• ON COMSET GOSUB branches the program execution to a subroutine when
background reception on a specified channel is interrupted.

• COMSET ON empties the buffer and turns on background reception on the
specified channel.

Chapter 4 — Managing Input and Output

52 Fingerprint Developer’s Guide

• COMSET OFF turns off background reception on the specified channel and
empties the buffer.

• COM ERROR ON enables error handling on a specified channel.

• COM ERROR OFF disables error handling on a specified channel (default).

• COMSTAT reads the status of the buffer of a specified channel.

• COMBUF$ reads data in the buffer of a specified channel.

• LOC returns the status of the buffers in a specified channel.

• LOF returns the status of the buffers in a specified channel.

Background Communication Example
This example uses the various Fingerprint commands to set up background
communication. For specifics on each command, see the Fingerprint Command
Reference Manual.

To set up the printer for background communication

1 Enable the error handling for the desired background communication channel
using a COM ERROR ON statement. For specifics, see COM ERROR ON in the
Fingerprint Command Reference Manual.

It may be useful to create a few messages to indicate what caused the
interruption. In this example, error handling is enabled for communication
channel “uart1:”, and messages will be printed to the standard out channel for all
conditions that can be detected by a COMSTAT function:

10 COM ERROR 1 ON
20 A$=“Max. number of characters”
30 B$=“End char. received”
40 C$=“Communication error”
50 D$=“Attention string received”

2 Continue with a COMSET statement specifying:

• the communication channel to be used.

• the character or string of characters used to tell the printer to start receiving
data and to stop receiving data.

• the character or characters to be ignored (filtered out from the received data).

• the character or string of characters to use as an attention string that
interrupts reception.

• the number of characters received before the transmission is interrupted.
This parameter also decides the size of the buffer (that is, how much of the
temporary memory will be allocated).

Note: Start, stop, ignore, and attention characters are selected according to
the protocol of the computing device that transmits the data. Non-printable
characters, for example STX and ETX can be specified using a CHR$
function. To specify no character, use an empty string.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 53

In this example, the background reception is set to channel “uart1:”, the Start
character is A, the End character is CHR$ (90) (the character Z), the character to
be ignored is #, the attention string is BREAK, and the maximum number of
characters in the buffer is 20:

60 COMSET 1,“A”,CHR$(90),“#”,“BREAK”,20

3 Use an ON COMSET GOSUB statement to specify a subroutine to branch to
when reception is interrupted. Interruption occurs when any of the following
conditions are fulfilled:

• an end character is received.

• an attention string is received.

• the maximum number of characters have been received.

In this example, when the reception of data on communication channel 1
(“uart1:”) is interrupted, the execution branches to a subroutine starting on line
number 1000.

70 ON COMSET 1 GOSUB 1000

4 Turn on the COMSET:

80 COMSET 1 ON

5 When reception is interrupted, check the buffer contents. You can read the
content of the buffer (for example, to a string variable) using a COMBUF$
function:

1000 QDATA$=COMBUF$(1)

The COMSTAT function can be used to detect what has caused the interruption.
Use the logical operator AND to detect the following four reasons of
interruption as specified by COMSET:

• Max. number of characters received (2).

• End character received (4).

• Attention string received (8).

• Communication error (32).

Different messages to be printed to the standard OUT channel, depending on
what interrupted communication. By assigning the COMSTAT value to a
numeric variable, execution is faster than checking the COMSTAT value several
times for different values, as seen in this example:

1010 Q% = COMSTAT (1)
1020 IF Q% AND 2 THEN PRINT A$
1030 IF Q% AND 4 THEN PRINT B$
1040 IF Q% AND 8 THEN PRINT C$
1050 IF Q% AND 32 THEN PRINT D$

Note: The COMSET interrupt must be turned on after it has occurred and been
resolved.

Chapter 4 — Managing Input and Output

54 Fingerprint Developer’s Guide

To temporarily turn off background reception during some part of the program
execution, issue a COMSET OFF statement, and then turn reception on again
using a new COMSET ON statement.

6 Add a few lines to print the content of the buffer (line 1060) and create a loop
that waits from input from the host (line 90). The entire example looks like this:

NEW
10 COM ERROR 1 ON
20 A$=“Max. number of char. received”
30 B$=“End char. received”
40 C$=“Attn. string received”
50 D$=“Communication error”
60 COMSET 1, “A”,CHR$(90),“#”,“BREAK”,20
70 ON COMSET 1 GOSUB 1000
80 COMSET 1 ON
90 IF QDATA$=“” THEN GOTO 90
100 END
1000 QDATA$=COMBUF$(1)
1010 Q% = COMSTAT (1)
1020 IF Q% AND 2 THEN PRINT A$
1030 IF Q% AND 4 THEN PRINT B$
1040 IF Q% AND 8 THEN PRINT C$
1050 IF Q% AND 32 THEN PRINT D$
1060 PRINT QDATA$
1070 RETURN
RUN

7 You can test the example by pressing Enter on the host keyboard. Then enter
various characters and see what happens, starting with the start character, stop
character, ignore character, attention string, and maximum number of
characters parameters in the COMSET statement.

Retrieving Buffer Status With LOC or LOF
LOC and LOF return the status of the receive or transmitter buffers in an OPENed
communication channel.

If the channel is OPENed for INPUT:

• LOC returns the remaining number of characters to be read from the receive
buffer.

• LOF returns the remaining free space (in bytes) in the receive buffer.

If the channel is OPENed for OUTPUT:

• LOC returns the remaining free space (bytes) in the transmitter buffer.

• LOF returns the remaining number of characters to be transmitted from the
transmitter buffer.

Note: Because COMSET ON/OFF statements empty the buffer, use COMBUF$
to read the buffer contents first.

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 55

The number of bytes includes characters that will be mapped as NUL.

This example reads the number of bytes which remains to be received from the
receiver buffer of “uart2:”:

10 OPEN “uart2:” FOR INPUT AS #2
20 A%=LOC(2)
30 PRINT A%
...
...

The example shows how the number of free bytes in the receive buffer of
communication channel “uart2:” is calculated:

10 OPEN “uart2:” FOR INPUT AS #2
20 A%=LOF(2)
30 PRINT A%
...
...
80 COMSET 1 ON
90 IF QDATA$=“” THEN GOTO 90
100 END
1000 QDATA$=COMBUF$(1)
1010 IF COMSTAT(1) AND 2 THEN PRINT A$
1020 IF COMSTAT(1) AND 4 THEN PRINT B$
1030 IF COMSTAT(1) AND 8 THEN PRINT C$
1040 IF COMSTAT(1) AND 32 THEN PRINT D$
1050 PRINT QDATA$
1060 RETURN
RUN

Setting Up RS-422 Communication
Some Intermec printers can be fitted with an optional interface board that provides
RS-422 connectivity (isolated or non-isolated) on “uart2:” or “uart3:”.

Neither of these 4-line protocols provide the hardware handshake (RTS/CTS)
feature, but XON/XOFF or ENQ/ACK can be used if so desired. Two lines transmit
data and the other two receive data.

After you install the interface board in the printer, use the next procedure to set up
RS-422 communication.

To set up the printer for RS-422 communication

1 Set the printer flow control as follows:

2 Use the SETSTDIO statement to set “uart2:” or “uart3:” as the standard I/O
channel.

RTS/CTS: Always Disable

ENQ/ACK: Enable or Disable

XON/XOFF, Data to host: Always Enable

XON/XOFF, Data from host: Enable or Disable

Chapter 4 — Managing Input and Output

56 Fingerprint Developer’s Guide

Output to the Standard OUT Channel

The standard OUT channel returns the printer responses to instructions received
from the host. For simplicity, the same device is usually selected for both standard
IN and OUT channels.

For every instruction received on the standard IN channel, the printer returns “Ok”
or an error message (such as “Feature not implemented” or “Syntax Error”) on the
standard OUT channel. If the standard OUT channel is connected to the host
computer, the message appears onscreen.

Use VERBOFF/VERBON statements to turn the verbosity off or on. The verbosity
level can be selected by SYSVAR(18), and the type of error message can be selected by
SYSVAR(19).

These Fingerprint commands return data only on the standard OUT channel:

• PRINT

• PRINTONE

• DEVICES

• FILES

• FONTS

• IMAGES

• LIST

Printing Expressions With PRINT
PRINT prints a line on the standard OUT channel (typically, to the screen of the
host). The PRINT statement can be followed by one or more string or numeric
expressions.

If the PRINT statement contains several expressions, these must be separated by
either commas (,) semicolons (;), or plus signs (+). Plus signs are used only between
string expressions:

• A comma (,) places the following expression at the start of the next tabulating
zone (each zone is 10 characters long). Example:

PRINT “Price”,“$10”

The printer returns:

Price $10

• A semicolon (;) places the following expression immediately adjacent to the
preceding expression. Example:

PRINT “Price_”; “$10”

The printer returns:

Price_$10

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 57

• A plus sign (+) places the following string expression immediately adjacent to the
preceding string expression. Example:

PRINT “Price_”+“$10”

The printer returns:

Price_$10

Each line is terminated by a carriage return to make the PRINT statement start on a
new line. However, if a PRINT statement is appended by a semicolon, the carriage
return is suppressed and the next PRINT statement is printed on the same line as
the preceding one:

10 PRINT “Price_”;“$10”;
20 PRINT “_per_dozen”
RUN

The printer returns:

Price_$10_per_dozen

A PRINT statement can also be used to return the result of a calculation or a
function:

PRINT 25+25:PRINT CHR$ (65)

The printer returns:

50
A

If the PRINT statement is not followed by any expression, a blank line is produced.

Printing Characters by ASCII Values With PRINTONE
PRINTONE prints the alphanumeric representation of one or more characters,
specified by their respective ASCII values, to the standard OUT channel. The
PRINTONE statement is useful when a certain character cannot be produced from
the keyboard of the host.

PRINTONE is very similar to the PRINT statement and follows the same rules
regarding separating characters (commas and semicolons). Example:

PRINTONE 80;114;105;99;101,36;32;49;48

The printer returns:

Price $ 10

Note: The returned ASCII value depends on the currently selected character set, and
on the current keypad mapping.

Chapter 4 — Managing Input and Output

58 Fingerprint Developer’s Guide

Redirecting Output to a File

Some Fingerprint commands return data on the standard OUT channel by default.
However, it is possible to redirect such output to a file using a REDIRECT OUT
statement.

When a REDIRECT OUT statement is issued with an appending string expression
(REDIRECT OUT <sexp>), the expression specifies the name of a sequential file in
which the output is stored. In this case no data is echoed back to the host.

When no file name appends the statement, the output is directed back to the
standard OUT channel.

In the following example, the output is redirected to the file “IMAGES.DAT”. The
images in the printer memory are read to the file, after which the output is
redirected back to the standard OUT channel. Then the file is copied to the
communication channel “uart1:” and printed on the screen of the host:

10 REDIRECT OUT “IMAGES.DAT”
20 IMAGES
30 REDIRECT OUT
RUN
Ok

Output to Sequential Files

This section describes the commands you use in connection with output to
sequential files.

Using an OPEN Statement
Before any data can be written to a sequential file, it must be opened. Use the OPEN
statement to specify the name of the file and the mode of access (OUTPUT or
APPEND).

• OUTPUT means that existing data is replaced.

• APPEND means that new data is appended to existing data.

In the OPEN statement you must also assign a number to the opened file, which is
used when the file is referred to in other instructions. The number mark (#) is
optional. Optionally, the length of the record can also be changed (default is 128
bytes). Up to 10 files and devices can be open at the same time.

In this example, the file “ADDRESSES” is opened for output and given the reference
number 1:

OPEN “ADDRESSES” FOR OUTPUT AS #1

In this example, the file “PRICELIST” is opened for appended data and is given the
reference number 5:

OPEN “PRICELIST” FOR APPEND AS #5

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 59

Printing Expressions to a Sequential File With PRINT#
PRINT# prints data entered as string or numeric expressions to a sequential file. For
more information, see “Printing Expressions With PRINT” on page 56.

There are two ways to divide the file into records:

• Each PRINT# statement creates a new record as seen in lines 20-40 in the
example.

• Commas inside a string divide the string into records, as seen in line 50 in the
example.

Example:

10 OPEN “QFILE” FOR OUTPUT AS #1
20 PRINT #1, “Record A”, “a”, “b”, “c”
30 PRINT #1, “Record B”, 1, 2, 3
40 PRINT #1, “Record C”, “x”; “y”; “z”
50 PRINT #1, “Record D,Record E,Record F”

Printing Characters by ASCII Values With PRINTONE#
The PRINTONE# statement prints characters entered as decimal ASCII values
according to the selected character set to the selected file or device. For more
information, see “Printing Characters by ASCII Values With PRINTONE” on
page 57.

This example prints two records (“Hello” and “Goodbye”) to “FILE1”:

10 OPEN “FILE1” FOR OUTPUT AS 55
20 PRINTONE#55,72;101;108;108;111
30 PRINTONE#55,71;111;111;100;98;121;101

Using a CLOSE Statement
After writing data to the file, close it using the same reference number as when it was
opened, as in this example:

10 OPEN “FILE1” FOR OUTPUT AS 55
20 PRINTONE#55,72;101;108;108;111
30 PRINTONE#55,71;111;111;100;98;121;101
40 CLOSE 55

Counting Data Blocks and Determining File Length With LOC and
LOF

Use LOC to return the number of 128-byte blocks that have been written since the
file was opened. For an example, see “Counting Data Blocks with LOC” on
page 47.

LOF returns the length (in bytes) of a file that has been opened. For an example, see
“Determining File Length with LOF” on page 47.

Chapter 4 — Managing Input and Output

60 Fingerprint Developer’s Guide

Output to Random Files

These Fingerprint commands are used in connection with output to random files:

• OPEN

• FIELD

• LSET/RSET

• PUT

• CLOSE

• LOC

• LOF

Opening a File for Random Input or Output With OPEN
Start by opening a file for random input/output. Since random access is selected by
default, the mode of access can be omitted from the statement, as in this example:

10 OPEN “ZFILE” AS #1

Optionally, the length of each record in the file can be specified in number of bytes
(default is 128 bytes):

10 OPEN “ZFILE” AS #1 LEN=14

Creating a Buffer With FIELD
Next, create a buffer using a FIELD statement. The buffer is given a reference
number and divided into a number of fields, each with a specified number of
characters. A string variable is assigned to each field.

The buffer specifies the format of each record in the file. The sum of the length of
the different fields in a record must not exceed the record length specified in the
OPEN statement.

In the example below, 4 bytes are allocated to field 1, 4 bytes to field 2 and 6 bytes to
field 3. The fields are assigned to the string variables F1$, F2$, and F3$ respectively.

20 FIELD#1, 4 AS F1$, 4 AS F2$, 6 AS F3$

The record produced looks like this:

The file can consist of many records, all with the same format. To produce files with
different record lengths, the file must be OPENed more than once and with
different reference numbers.

Now it is time to write some data to the file. Usually the data comes from the host or
from the printer keyboard. In this example, we will type the data directly on the host
and assign the data to string variables:

1

1 2 3Field:

Record:

Byte: 1 2 3 4 5 61 2 3 4 1 2 3 4

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 61

30 QDATA1$=“ABC”
40 QDATA2$=“DEF”
50 QDATA3$=“12345678”

Left or Right Justifying Data With LSET and RSET
There are two instructions for placing data into a random file buffer:

• LSET places the data left-justified.

• RSET places the data right-justified.

In other words, if the input data consists of fewer bytes than the field into which it is
placed, it is placed either to the left (LSET) or to the right (RSET).

If the length of the input data exceeds the size of the field, the data is truncated from
the end (LSET), or from the start (RSET).

60 LSET F1$=QDATA1$
70 RSET F2$=QDATA2$
80 LSET F3$=QDATA3$

This set of instructions produce the following record:

The first field is left-justified, the second field is right-justified, and the third field is
left-justified and truncated at the end. Digits 7 and 8 are omitted since the field is
only six bytes long. If the field had been right-justified, then digits 1 and 2 would
have been omitted instead.

Transferring Data to the File with PUT
The next step is to transfer the record to the file using the PUT statement. PUT is
always followed by the number assigned to the file when it was OPENed, and the
number of the record in which you want to place the data (1 or larger).

In our example, the file ZFILE was opened as #1 and we want to place the data in the
first record. You can place data in whatever record you like. The order is of no
consequence.

90 PUT #1,1

You can place data into other records using additional sets of LSET, RSET and PUT
statements. Below is an example of a three-record file:

Note: Only string variables can be used. You can convert numbers to strings using
the STR$ function.

1

1 2 3Field:

Record:

Byte: 1 2 3 4 5 61 2 3 4 1 2 3 4

Byte: 1 2 3 4 5 61 2 3 4 1 2 3 4 1 2 3 4 5 61 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3

Chapter 4 — Managing Input and Output

62 Fingerprint Developer’s Guide

Using a CLOSE Statement
When you are finished, close the file:

100 CLOSE #1

Nothing actually happens before you execute the program using a RUN statement.
Then the data is placed into the fields and records as specified by the program, as in
this example:

10 OPEN “ZFILE” AS #1 LEN=14
20 FIELD#1, 4 AS F1$, 4 AS F2$, 6 AS F3$
30 QDATA1$=“ABC”
40 QDATA2$=“DEF”
50 QDATA3$=“12345678”
60 LSET F1$=QDATA1$
70 RSET F2$=QDATA2$
80 LSET F3$=QDATA3$
90 PUT #1,1
100 CLOSE #1
RUN

Finding the Last Field Read and Determining File Length With LOC
and LOF

Use LOC to return the number of the last record read by the use of GET statement.
For an example, see “Finding the Last Field Read with LOC” on page 49.

LOF returns the length (in bytes) of a file that has been opened. For an example, see
“Determining File Length with LOF” on page 47.

Output to Communication Channels

Output from a Fingerprint program can be directed to any serial communication
channel OPENed for sequential OUTPUT following the same principles as for
output to files. For more information, see “Output to Sequential Files” on
page 58.

These Fingerprint commands are used in connection with output to a
communication channel:

• OPEN

• PRINT#

• PRINTONE#

• CLOSE

• LOC

• LOF

• COPY

Note: In this case, the “centronics:” channel cannot be used.

Chapter 4 — Managing Input and Output

Fingerprint Developer’s Guide 63

In this example, “Record 1” and “Record 2” are printed to the serial communication
channel “uart2:”:

10 OPEN “uart2:” for OUTPUT AS #1
20 PRINT #1, “Record 1”
30 PRINTONE #1, 82;101;99;111;114;100;32;50
40 CLOSE #1

In this example, the file “datafile” (stored on a USB storage device) is printed to the
serial communication channel “uart2:”:

COPY “usb1:datafile”,“uart2:”

Output to the Printer Display

The only device other than the serial communication channels that can be opened
to receive output from a Fingerprint program is the printer display (“console:”). For
more information, see your printer user manual, or the Fingerprint Command
Reference Manual.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 4 — Managing Input and Output

64 Fingerprint Developer’s Guide

65

5
Managing Fonts, Bar Codes, and Images

This chapter explains how to manage fonts, bar code printing, and images,
and includes these topics:

• Managing Fonts

• About Bar Code Symbologies

• Understanding Images and Image Files

Chapter 5 — Managing Fonts, Bar Codes, and Images

66 Fingerprint Developer’s Guide

Managing Fonts

Fingerprint includes a variety of commands you can use to manage fonts and font
printing. For more information about the fonts included by default with your
printer, see the Fingerprint Command Reference Manual.

About Font Types
Fingerprint supports scalable fonts in TrueType® (.ttf) format, and TrueType-based
OpenType® format. You can also purchase additional fonts from Monotype at
www.fonts.com.

Single-byte fonts are mapped in the range of ASCII 0-127 dec (7-bit
communication) or ASCII 0-255 dec (8-bit communication). Some examples are
Latin, Greek, Cyrillic, Arabic, and Hebrew fonts.

Double-byte fonts are fonts that are mapped in the area of ASCII 0-65,536 dec. (8-bit
communication only). Any glyph (such as characters, punctation marks, symbols, or
digits) in the Unicode World Wide Character Standard can be specified. Example of
languages that typically require double-byte fonts are Chinese, Japanese, and
Korean.

Selecting Fonts
Use the FONT and BARFONT statements to select a font. Use the NASC statement
to choose the corresponding character set. You can use these commands with both
single- and double-byte fonts.

For illustrations of the available character sets, see “Character Sets and Keywords”
on page 133.

All fonts stored in the printer memory can be listed to the standard OUT channel by
a FONTS statement. This statement does not list font aliases. Another method of
listing fonts is to use the FONTNAME$ function. You can also list fonts to the
standard OUT channel using the FILES statement.

This example shows how to list all fonts:

10 A$ = FONTNAME$(0)
20 IF A$ =“” THEN END
30 PRINT A$
40 A$ = FONTNAME$(-1)
50 GOTO 20
RUN

Controlling Font Direction, Size, Slant, and Width
Fonts can be rotated in four directions using a DIR statement. Use the FONT and
BARFONT commands to specify size in points (1 point = 1/72 in = 0.352 mm) and
slant in degrees (clockwise). The width can be set as a percentage value relative the
height.

http://www.fonts.com/
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 5 — Managing Fonts, Bar Codes, and Images

Fingerprint Developer’s Guide 67

Adding and Removing Fonts
Use PrintSet, the printer web page, a USB storage device, FTP, or SmartSystems to
copy font files to your printer. Font files stored in read/write devices (“/c”, “tmp:”,
and “usb1:”) can be deleted using KILL statements.

Creating and Using Font Aliases
Font aliasing provides flexibility when moving from a legacy or competitive printer
installation to an Intermec printer installation. When you use font aliasing, you do
not need to change font names in a datastream, and you can adjust the width,
height, and slant of a font. An alias provides a link from the font name in a
datastream to a currently installed font. For example, you could create a font alias
that points an Arial font to use Univers instead.

To create several font aliases automatically, create a Batch Alias file and copy it to /
home/user/fonts/.fontalias.

The format of the file should be:

"alias_1_name", "reference_font", size, slant, width
"alias_2_name", "reference_font", size, slant, width

You can create an unlimited number of font aliases. A font alias can be used like any
other font, but its size, slant, and width can not be changed.

Examples:

“BODYTEXT”,“Century Schoolbook”,10,80
“HEADLINE”,“Univers Bold”,18,110
“WARNING”,“Univers”,12,10,95

About Bar Code Symbologies

Fingerprint supports the following bar code symbologies. When using Fingerprint
commands to work with bar codes, use the name for the bar code as shown:

Note: The names of the font files can differ from the names of the corresponding
fonts. Make sure you specify the correct font file name in the KILL statement.

Standard Bar Codes

Bar Code Type Use This Name

Aztec “AZTEC”

Codabar “CODABAR”

Code 11 “CODE11”

Code 16K “CODE16K”

Code 39 “CODE39”

Code 39 full ASCII “CODE39A”

Code 39 with checksum “CODE39C”

Code 49 “CODE49”

Code 93 “CODE93”

Code 128 “CODE128”

Chapter 5 — Managing Fonts, Bar Codes, and Images

68 Fingerprint Developer’s Guide

Code 128 subset A “CODE128A”

Code 128 subset B “CODE128B”

Code 128 subset C “CODE128C”

Datamatrix “DATAMATRIX”

Dotcode “DOTCODE”

DUN-14/16 “DUN”

EAN-8 “EAN8”

EAN-8 Composite with CC-A or CC-B “EAN8_CC”

EAN-13 “EAN13”

EAN-13 Composite with CC-A or CC-B “EAN13_CC”

EAN-128 “EAN128”

EAN-128 subset A “EAN128A”

EAN-128 subset B “EAN128B”

EAN-128 subset C “EAN128C”

EAN.UCC 128 Composite with CC-A or CC-B “EAN128_CCCAB”

EAN.UCC Composite with CC-CC “EAN128_CCC”

Five-Character Supplemental Code “ADDON5”

Gridmatrix “GRIDMATRIX”

Industrial 2 of 5 “C2OF5IND”

Industrial 2 of 5 with checksum “C2OF5INDC”

Interleaved 2 of 5 “INT2OF5”

Interleaved 2 of 5 with checksum “I2OF5C”

Interleaved 2 of 5 A “I2OF5A”

Matrix 2 of 5 “C2OF5MAT”

MaxiCode “MAXICODE”

MicroPDF417 “MICROPDF417”

MSI (modified Plessey) “MSI”

PDF 417 “PDF417”

Planet “PLANET”

Plessey “PLESSEY”

Postnet “POSTNET”

QR Code “QRCODE”

RSS-14 “RSS14”

RSS-14 Expanded “RSS14E”

RSS-14 Expanded Stacked “RSS14ES”

RSS-14 Limited “RSS14L”

RSS-14 Stacked “RSS14S”

RSS-14 Stacked Omnidirectional “RSS14SO”

RSS-14 Truncated “RSS14T”

Straight 2 of 5 “C2OF5”

Standard Bar Codes (continued)

Bar Code Type Use This Name

Chapter 5 — Managing Fonts, Bar Codes, and Images

Fingerprint Developer’s Guide 69

General Rules for Bar Code Printing
The printer contains a number of bar code generators, which can produce highly
readable bar codes in four different directions.

Generally, it is more difficult to print a bar code with the bars across the media path
(ladder style) than along the media path (picket fence style.) Therefore, to ensure a
highly readable printout, Intermec recommends that you use narrow bars at least 3
dots wide when printing ladder-style bar codes.

Print speed also affects the printout quality of bar codes. Generally, a lower print
speed gives a better quality, especially for ladder style bar codes and at low ambient
temperatures.

Print speed should be only as high as necessary, considering the overall print cycle
time. In some instances, a lower print speed may actually give better overall
performance.

Intermec recommends that you do your own tests with your unique applications to
find the best compromise between printout quality, performance, and media.

For more information on specific bar code parameters and settings, see the
Fingerprint Command Reference Manual.

Commands for Working With Bar Codes
Use these Fingerprint commands when working with bar codes:

• BARADJUST - Adjusts position of bar code to avoid faulty printhead dots.

• BARCODENAME$ - Lists available bar code fonts.

• BARFONT - Selects a human-readable font for bar code interpretive printing.

• BARFONT ON|OFF - Enables bar code interpretive printing.

Two-Character Supplemental Code “ADDON2”

UCC-128 Serial Shipping Container Code “UCC128”

UPC-5 digits Add-On Code “SCCADDON”

UPC-A “UPCA”

UPC-A Composite with CC-A or CC-B “UPCA_CC”

UPC-D1 “UPCD1”

UPC-D2 “UPCD2”

UPC-D3 “UPCD3”

UPC-D4 “UPCD4”

UPC-D5 “UPCD5”

UPC-E “UPCE”

UPC-E Composite with CC-A or CC-B “UPCE_CC”

UPC Shipping Container Code “UPCSCC”

USPS 4-State "USPS4CB"

Standard Bar Codes (continued)

Bar Code Type Use This Name

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 5 — Managing Fonts, Bar Codes, and Images

70 Fingerprint Developer’s Guide

• BARHEIGHT - Bar code height.

• BARMAG - Specifies a magnification for the width of bars in a bar code.

• BARRATIO - Sets the ratio between wide and narrow bars in a bar code.

• BARSET - Specifies a bar code type and sets additional parameters for complex
bar codes.

• BARTYPE - Specifies a bar code type.

• PRBAR - Provides input data for a bar code.

For more information, see the Fingerprint Command Reference Manual.

Understanding Images and Image Files

When discussing Fingerprint programming, there is a distinction between images
and image files:

• “Image” is a generic term for all kinds of printable pictures, such as symbols or
logotypes, in the internal bitmap format of Intermec Fingerprint.

• “Image Files” are files in various bitmap formats that can be converted to
Fingerprint “images.” Image files can be stored in memory, but must be
converted to “images” before printing.

The printer’s current image buffer can be saved as a file using the IMAGE BUFFER
SAVE statement and automatically be installed in the printer as an image in the
Fingerprint internal bitmap format. This also includes print images saved to the
image buffer using the PRBUF statement.

Standard Images
As a standard, the systems part (“Kernel”) of the printer permanent memory
contains a number of images primarily used for printing test labels and for training
purposes:

• CHESS2X2.1

• CHESS4X4.1

• DIAMONDS.1

• GLOBE.1

Note: Image files to be used in conjunction with the DISPLAY IMAGE, DISPLAY
KEY, or DISPLAY STATE commands are not the same as image files to be used in
label layouts as described in this section. For more information, see “Customizing
the Printer Display” on page 112.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 5 — Managing Fonts, Bar Codes, and Images

Fingerprint Developer’s Guide 71

Downloading Image Files
Use PrintSet, the printer web page, a USB mass storage device, FTP, or
SmartSystems to copy image files to your printer.

Image files in .PCX, .PNG, .GIF, and .BMP format can also be downloaded,
automatically converted to images, and installed using the IMAGE LOAD
statement. You can save the current print buffer as a file and automatically convert
it to an image using IMAGE BUFFER SAVE.

Image files in Intel hex formats, or formats according to the transfer protocols
UBI00, UBI01, UBI02, UBI03, or UBI10, can be downloaded to the printer using the
STORE IMAGE, STORE INPUT, and STORE OFF.

Example:

10 STORE OFF
20 INPUT “Name:”, N$
30 INPUT “Width:”, W%
40 INPUT “Height:”, H%
50 INPUT “Protocol:”, P$
60 STORE IMAGE N$, W%, H%, P$
70 STORE INPUT 100
80 STORE OFF
RUN

The system variable SYSVAR allows you to check the result of an image download
using STORE INPUT:

• SYSVAR (16) reads the number of bytes received.

• SYSVAR (17) reads the number of frames received.

Both values are reset when a new STORE IMAGE statement is executed.

A special case involves print images complying with the PRBUF protocol. These are
not normal pictures or logotypes, but binary graphics data including printable
objects which have been designed in some application program or printer driver in
the host. Using the PRBUF statement, these print images can be downloaded
directly to the printer image buffer and printed, but cannot be saved in the printer.

Listing Images
The names of all images stored in printer memory can be listed to the standard OUT
channel using an IMAGES statement, or to a program using the IMAGENAME$
function.

Image files can be listed to the standard OUT channel using a FILES statement.

This example lists all standard images in the printer memory.

IMAGES

This results in:

CHESS2X2.1 CHESS4X4.1
DIAMONDS.1 GLOBE.1

Note: You must use one-bit image file.

Chapter 5 — Managing Fonts, Bar Codes, and Images

72 Fingerprint Developer’s Guide

3568692 bytes free 1717812 bytes used
Ok

Removing Images and Image Files
Images can be removed from the read/write devices (“/c”, “tmp:”, and “usb1:”) using
REMOVE IMAGE statements.

Image files can be removed from the read/write devices (“/c”, “tmp:”, and “usb1:”)
using KILL statements.

73

6
Designing Bar Code Labels

This chapter describes how to design and print a bar code label layout, and
includes these topics:

• Creating a Layout With Fields

• Positioning Fields in the Layout

• Creating Single-Line and Multi-Line Text Fields

• Creating Bar Code Fields

• Creating Image Fields

• Creating Boxes

• Creating Lines

• Additional Printing Instructions

• Using the LAYOUT Command

• Creating a Simple Label

• Handling Errors With ERRHAND.PRG

Chapter 6 — Designing Bar Code Labels

74 Fingerprint Developer’s Guide

Creating a Layout With Fields

A bar code label layout is made up of a number of fields. There are six different types
of fields:

• Single-line text fields. For more information, see “Creating Single-Line and
Multi-Line Text Fields” on page 79.

• Multi-line text fields. For more information, see “Creating Single-Line and
Multi-Line Text Fields” on page 79.

• Bar code fields. For more information, see “Creating Bar Code Fields” on
page 81.

• Image fields. For more information, see “Creating Image Fields” on page 83.

• Box fields. For more information, see “Creating Boxes” on page 85.

• Line fields. For more information, see “Creating Lines” on page 85.

The next illustration shows how these fields appear in a sample label.

Example of Fields in a Label Layout

ABC Company
1000 First Ave.
Azusa CA

Image field Multi-line text field

Line field

Single-line text field

Box field

Bar code field with
human-readable interpretation

Label border

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 75

Positioning Fields in the Layout

All fields are positioned relative to the “origin,” the point on the media that
corresponds to the innermost active dot on the printhead at the time the
PRINTFEED statement is executed.

The location of the origin is affected by:

• the printer X-start value. This value can be set by using a SETUP command, or by
manually placing the printer in Setup mode and changing the value.

• the current Feed setting on the printer, and any FORMFEED statements
executed before the current PRINTFEED statement or after the preceding
PRINTFEED statement. This determines where the origin is relative to the front
or rear edge of the label.

Starting from the origin, the X-axis runs across the media path from left to right (as
seen when facing the printer), and the Y-axis runs along the media path from the
printhead and back towards the media supply.

Field Positioning Settings

Y-axis

Origin

X-start

Dot #0
Feed direction

Insertion point

X-axis

Field

Anchor points

Chapter 6 — Designing Bar Code Labels

76 Fingerprint Developer’s Guide

About Units of Measure
The unit of measure is always “dots”, which means that all measures depend on the
density of the printhead.

For 300 dots/inch printheads, a dot = 0.00333 inches or 3.33 mils.

For 203 dots/inch printheads, a dot is = 0.00492 inches or 4.92 mils.

Because fonts are specified in points instead of dots, all fonts should print the same
size regardless of the printhead density.

Dots are the same size along both the X-axis and the Y-axis.

About Insertion and Anchor Points
The insertion point of any field is specified using a PRPOS<x-pos>,<y-pos>
statement. For example, the statement PRPOS 100, 200 means that the object is
inserted at a position 100 dots to the right of the origin and 200 dots further back
along the media path.

Each field has up to 9 anchor points. Use the ALIGN command to choose the
anchor point that is positioned at the insertion point. For example, specifying
ALIGN 1 places the lower left corner of a text field at the insertion point..

The next illustrations show the anchor point locations for the different fields.

Bar Code Field Anchor Points

Box Field Anchor Points

Image Field Anchor Points

Note: For detailed information on the anchor points of bar codes where the
interpretation is an integrated part of the bar code pattern (such as for EAN
and UPC codes), see ALIGN in the Fingerprint Command Reference Manual.

1 2 3

4

5

6

7 8 9

1, 4, or 7 2, 5, or 8 3, 6, or 9

1 2 3

4
5

6

7 8 9

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 77

Line Field Anchor Points

Multi-Line Text Field Anchor Points

Single-Line Text Field Anchor Points

1, 4, or 7 2, 5, or 8 3, 6, or 9

7 8 9

ABC Company
1000 First St
Azusa CA 99999
Attn: Receiving

ABC Company
1000 First St

Azusa CA 99999
Attn: Receiving

ABC Company
1000 First St

Azusa CA 99999
Attn: Receiving

ABC Company
1000 First St
Azusa CA 99999
Attn: Receiving

ABC Company
1000 First St

Azusa CA 99999
Attn: Receiving

ABC Company
1000 First St

Azusa CA 99999
Attn: Receiving

4

5

6

1 2 3

ABC Company
1000 First St
Azusa CA 99999
Attn: Receiving

ABC Company
1000 First St

Azusa CA 99999
Attn: Receiving

ABC Company
1000 First St

Azusa CA 99999
Attn: Receiving

Note: For a multi-line text field, ALIGN sets the anchor points for both the text
inside the box and the box surrounding the field. The box can be made visible or
invisible.

Baseline

1 2 3

4

5

6

7 8 9

Chapter 6 — Designing Bar Code Labels

78 Fingerprint Developer’s Guide

About Print Directions
By default, all fields run across the media from left to right. Using a DIR command,
you can rotate the field clockwise around the anchor point/insertion point in 90°
increments (0°, 90°, 180°, or 270°), as seen in the next illustration.

Print Directions in Fingerprint: In this example, the DIR command rotates the text field
around anchor point 1.

Checking the Current Position
As you position and specify fields in the label design, you may need to determine the
position of the insertion point after a field is printed. Use the PRSTAT function to
determine the current position of the insertion point. For example, after creating a
single-line text field, you can use PRSTAT to return the exact location of the
insertion point. By default, the next new object is placed at the insertion point
unless a new position is specified:

• In print direction 1 or 3, PRSTAT (1) returns the absolute value of the insertion
point along the X-axis, and PRSTAT (2) returns the Y-value of the last executed
PRPOS statement.

• In print direction 2 or 4, PRSTAT (2) returns the absolute value of the insertion
point along the Y-axis, and PRSTAT (1) returns the X-value of the last executed
PRPOS statement.

In the next example, an unknown number of logo images are printed with 10-dot
spacing across the media path. The size of the logo is not known. To avoid an “field
out of label” error, the PRSTAT command is used to check the width of the printed
fields. If the printed width exceeds 550 dots, the printer continues printing on the
next label:

Field origin
ABCDEA

BC
D

E
A

BC
D

E

ABCDE

DIR 1

DIR 2

DIR 3

DIR 4

Feed direction

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 79

10 PRPOS 0,50
20 PRIMAGE “GLOBE.1”
30 X%=PRSTAT(1)
40 FOR A%=1 TO 10
50 Z%=PRSTAT(1)
60 PRPOS Z%+10,50
70 PRIMAGE “GLOBE.1”
80 IF Z%>550 THEN GOTO 100
90 NEXT
100 PRINTFEED
110 END
RUN

Checking the Size and Position of a Field
When printing a label, Fingerprint instructions are processed into a bitmap pattern
that can be sent to the printhead. This process is called rendering.

Use the RENDER OFF command to process instructions without printing
anything. By combining RENDER OFF with various PRSTAT variables, you can
determine the insertion point location, and thus the size and position of the field,
without actually printing the field on a label. Use RENDER ON to restore printing
as usual.

Creating Single-Line and Multi-Line Text Fields

A single-line text field consists of one or more alphanumeric characters on the same
line. A multi-line text field consists of up to 20 lines of text with up to 300 single-
byte characters per line.

In addition to the standard positioning statements PRPOS, ALIGN and DIR, a
single-line or multi-line text field can contain the following commands:

• FONT - Specifies the font to be used for the field.

• NORIMAGE and INVIMAGE - Sets regular or inverted printing.

• PRTXT - Specifies input data for the text field.

• PRBOX - Specifies the size of the box in which a text field is printed.

Specifying a Typeface with FONT
Specifies the single- or double-byte font to use for text. The default font is Univers at
12-point size, and no slant. The specified font is used for all text until a new FONT
statement is executed.

Inverting Black and White Printing with NORIMAGE or INVIMAGE
Normally, text is printed in black on the white background of the print media. Use
the INVIMAGE command to print text in white on a black background. The size of
the background is decided by the character cell. A NORIMAGE statement is only
needed when changing back from INVIMAGE printing.

Chapter 6 — Designing Bar Code Labels

80 Fingerprint Developer’s Guide

Specifying Text for Printing with PRTXT
Text for a single- or multi-line text area can be entered in the form of numeric
expressions and/or string expressions. Two or more expressions can be combined
using semicolons (;) or, in case of string expressions, by plus signs (+). String
constants must be enclosed by quotation marks (“...”). Variables are useful for
printing for example time, date, or various counters, and when the same
information is to appear in several places, for example both as plain text and as bar
code input data.

Defining Borders With PRBOX
Single- or multi-line text fields can be created using an extension of the PRBOX
statement. The PRBOX statement allows you to specify the height, width, and line
thickness of a box in which the text will be printed. Depending on the line thickness,
the box is invisible (thickness = 0) or has a black border line (thickness >0).
Additional parameters allows you to position the text inside the box, decide the line
spacing, and control the hyphenation.

Note that the anchor point choice affects the positioning of the text inside the box.
For information, see “About Insertion and Anchor Points” on page 76.

When a text line reaches the border of the box, it wraps to a new line according to
the hyphenation settings.

For more information, see the Fingerprint Command Reference Manual.

Summary for Text Fields
To print a single- or multi-line text field, the following information must be
specified. If no value is specified, Fingerprint uses the default values.

Example of a single-line text field:

10 PRPOS 100,200
20 ALIGN 7
30 DIR 2
40 FONT “Univers Bold,20,15,80”
50 INVIMAGE
60 PRTXT “HELLO”

Required Information for Single-Line Text Fields

Purpose Command Default Remarks

X/Y Position PRPOS 0/0 Number of dots

Alignment ALIGN 1 Select ALIGN 1-9

Direction DIR 1 Select DIR 1-4

Typeface FONT Univers,12,0,100

Style INVIMAGE no White on black print

NORIMAGE yes Black on white print

Text PRTXT – Field input data

Print a label PRINTFEED – Resets parameters to default

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 81

70 PRINTFEED
RUN

Example of a multi-line text field:

10 DIR 1
20 ALIGN 8
30 R$=“Hyphen&Sated words will be divid&Sed

into sylla&Sbles.”
40 NL$=“NEWLINE”
50 S$=“&S&Special Cases and EXTRAORDINARILY long

words.”
60 T$=R$+NL$+S$
70 PRPOS 300,300
80 PRBOX 700,500,20,T$,25,1,NL$,“&S - +”
90 PRINTFEED
RUN

Creating Bar Code Fields

Fingerprint supports many common bar code symbologies, including 2D bar codes
and dot codes like PDF417 and MaxiCode. A single bar code, including its optional
human-readable interpretation, makes up a bar code field.

In addition to the standard positioning statements PRPOS, ALIGN and DIR, a bar
code field can contain the following commands:

• BARSET - Specifies the bar code type and printing.

• BARFONT ON|OFF - Specifies the font to be used to print the bar code.

• PRBAR - Input data for the bar code.

Specifying a Bar Code Symbology With BARSET
This statement specifies the type of bar code and how it is printed. BARSET can also
replace separate BARHEIGHT, BARRATIO, BARTYPE, and BARMAG instructions.

BARSET contains optional parameters for specifying complex 2D bar or dot codes
such as PDF417. For more information, see the Fingerprint Command Reference
Manual.

For common one-dimensional bar codes, include the following parameters in the
BARSET statement:

• Bar code type. Name must be enclosed by quotation marks. Default is
“INT2OF5”.

• Ratio (wide bars). Default is 3.

• Ratio (narrow bars). Default is 1.

• Enlargement. Affects the bar pattern but not the interpretation, unless the bar
font is an integrated part of the code (such as for EAN/UPC). Default is 2.

• Height of the bars in dots. Default is 100.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 6 — Designing Bar Code Labels

82 Fingerprint Developer’s Guide

Choosing the Human-Readable Font with BARFONT
Specifies the single-byte font to be used for the human-readable interpretation. In
some bar codes, such as EAN/UPC, the interpretation is an integrated part of the
code.

You can change these font settings:

• Default font (Univers).

• Size in points. Default is 12.

• Slant in degrees. Default is 0.

• Vertical offset. Specifies the distance in dots between the bottom of the bar
pattern and the top of the interpretation characters. Default is 6.

• Height magnification. Default is 1.

• Width magnification. Default is 1.

• Width enlargement in percent. Default is 100.

To disable bar code interpretation printing, use BARFONT OFF.

Specifying Input Data with PRBAR
Depending on the type of bar code, input data for the bar code can be entered in the
form of numeric and/or string expressions. String constants must be enclosed by
quotation marks. Variables are useful for printing the time, date, or various
counters, or for when the same information is to appear in several places, such as in
plain text and as bar code input data.

Summary for Bar Code Fields
To print a bar code field, the following information and instructions must be
specified. If no value is given, defaults are substituted.

Required Information for Bar Code Fields

Purpose Command Default Remarks

X/Y Position PRPOS 0/0 Number of dots

Alignment ALIGN 1 Select ALIGN 1-9

Direction DIR 1 Select DIR 1-4

Bar Code Select BARSET see above

Human Readables BARFONT...ON see above Can be omitted

Input Data PRBAR – Input data to bar code field

Print a label PRINTFEED – Resets parameters to default

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 83

This example shows a typical bar code field instruction:

10 PRPOS 30,400
20 DIR 1
30 ALIGN 7
40 BARSET “CODE39”,2,1,3,120
50 BARFONT “Univers”,10,8,5,1,1 ON
60 PRBAR “ABC”
70 PRINTFEED
RUN

Creating Image Fields

An image field is a field containing an image in the internal bitmap format of
Fingerprint.

In addition to the standard positioning statements PRPOS, ALIGN and DIR, an
image field can contain the following instructions:

• MAG - Magnification value.

• NORIMAGE or INVIMAGE - Specifies inverse printing.

• PRIMAGE - Specifies the image file to use for the field.

Magnifying Images with MAG
Use a MAG statement to specify a magnification for the image. Images can be
magnified up to 400% (1 to 4 times). Height and width are specified separately.

Inverting Black and White Printing with NORIMAGE or INVIMAGE
Use an INVIMAGE statement to reverse the black and non-printed background
colors. The size of the background is determined by the size of the image. A
NORIMAGE statement is only needed when changing back from INVIMAGE
printing.

Specifying Images by Filename with PRIMAGE
Specifies the image by name in the form of a string expression. A string constant
must be enclosed by quotation marks. A string variable may be useful when the
same image is to appear in several places. The extension indicates the suitable
directions:

• Extension .1 matches DIR 1 and DIR 3

• Extension .2 matches DIR 2 and DIR 4

The image must be in the default directory.

Chapter 6 — Designing Bar Code Labels

84 Fingerprint Developer’s Guide

Summary for Image Fields
To print an image field, the following instructions must be specified. If no value is
specified, default values are substituted.

This example shows a typical image field instruction:

10 PRPOS 50,50
20 ALIGN 9
30 DIR 3
40 MAG 2,2
50 INVIMAGE
60 PRIMAGE “GLOBE.1”
70 PRINTFEED
RUN

Required Information for Image Fields

Purpose Command Default Remarks

X/Y Position PRPOS 0/0 Number of dots

Alignment ALIGN 1 Select ALIGN 1-9

Direction DIR 1 Select DIR 1-4

Magnification MAG 1,1

Style INVIMAGE no White-on-black

NORIMAGE yes Black-on-white

Image PRIMAGE – .1 or .2 depending on direction

Print a label PRINTFEED – Resets parameters to default

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 85

Creating Boxes

A box is a hollow square or rectangle that can be rotated with an increment of 90°
according to the print direction. If the line thickness is sufficiently large, the box
appears filled (another method is to print an extremely thick, short line).

In addition to the standard positioning statements PRPOS, ALIGN and DIR, a box
field can only contain the PRBOX command, which specifies the height and width
of the box, and the line weight (thickness) in dots of the optional border.

Summary for Boxes
To print a box, the following information and instructions must be specified. If no
value is specified, default values are substituted.

This example shows a typical box field instruction:

10 PRPOS 250,250
20 ALIGN 1
30 DIR 3
40 PRBOX 200,200,10
50 PRINTFEED
RUN

Creating Lines

You can print a line field in right angles to or across the media path.

In addition to the standard positioning statements PRPOS, ALIGN and DIR, a line
field can only contain the PRLINE command, which specifies the length and weight
(in dots) of the line. You can also use the PRDIAGONAL command to create a
diagonal line.

Required Information for Box Fields

Purpose Command Default Remarks

X/Y Position PRPOS 0/0 Number of dots

Alignment ALIGN 1 Select ALIGN 1-9

Direction DIR 1 Select DIR 1-4

Box specifications PRBOX – Height, width, and line weight in dots

Print a label PRINTFEED – Resets parameters to default

Chapter 6 — Designing Bar Code Labels

86 Fingerprint Developer’s Guide

Summary for Lines
To print a line field, the following information and instructions must be specified. If
no value is specified, default values are substituted.

Example:

10 PRPOS 100,100
20 ALIGN 1
30 DIR 4
40 PRLINE 200,10
50 PRINTFEED
RUN

Additional Printing Instructions

Fingerprint includes other commands you can use to further refine your bar code
label designs.

Printing Partial Fields With the CLIP ON Command
Ordinarily, bar code labels are designed to fit inside a “print window,” the size of
which is determined by the combination of the printer X-Start, Width, and Length
settings. Any field extending outside the print window causes a “Field out of label”
error condition (Error 1003)

Using the CLIP ON command, you can make the program accept fields extending
outside the print window. The CLIP ON command prints only the parts of the fields
within the borders of the print window.

If you get a “Field out of label” error, you can use CLIP OFF to enable printing of
fields that lie outside the printable area. This lets you see how much of the field is
missing so you can adjust the layout accordingly.

The clipping of bar codes requires further specification of the CLIP statement. For
more information, see the Fingerprint Command Reference Manual.

Use CLIP OFF to return printing to its default state.

Inverting Intersection Printing With XORMODE
By default, the intersection of any crossed lines is printed black. Use XORMODE
ON to print those intersections as white, and use XORMODE OFF to restore
defaults and print intersections as black.

Required Information for Line Fields

Purpose Command Default Remarks

X/Y Position PRPOS 0/0 Number of dots

Alignment ALIGN 1 Select ALIGN 1-9

Direction DIR 1 Select DIR 1-4

Line specifications PRLINE – Length and line weight in dots

Print a label PRINTFEED – Resets parameters to default

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 87

Using the LAYOUT Command

Many applications require the label layout, variable input data, and logotypes to be
sent to the printer as files or arrays. This requires less programming in the printer
and less data transfer between printer and host, but some kind of overhead program
in the host to handle data input and file transfer is typically of great help.

The program instruction is a statement called LAYOUT. Before using this
statement, a number of 52-byte files or arrays must be created:

• A layout file that specifies the type of field to be printed, along with any field-
specific information such as position, direction, or font type. Use a layout file to
set up single-line text fields, line and box fields, bar code fields, bar code
extended fields, or bar code interpretation fields.

• A logotype file that specifies a graphic field to be printed, along with the name of
the image file to be printed in the field. This file is required even if your label
does not need or use a graphic field in this way.

• A data file (or data array) that specifies the data to be printed in the fields.

• An error file (or error array) that sets up error handling for the layout.

Each file starts with a 2-byte hexadecimal element number (bytes 0 and 1) which is
used to link the layout record with a variable input record or a record in a layout
name file as explained later.

Byte 2 contains a single character that specifies the type of record:

• A = Logotype (specified by its name)

• B = Bar Code

• C = Character (single-line text)

• E = Bar Code Extended File - Corresponds to the last six parameters in the
BARSET statement. Must have lower element number than the corresponding
bar code record (B).

• H = Bar Code Font

• J = Baradjust (corresponds to BARADJUST statement)

• L = Logotype (specified by its number)

• S = Separation line

• X = Box

The remaining bytes are used differently depending on record type, and may specify
direction, position, or some other parameter. Each such instruction corresponds to
a Fingerprint instruction (for example, direction corresponds to DIR, alignment to
ALIGN, and x- and y-positions to PRPOS). Note that there are only 10 bytes
available for the font and bar font names. Since most names of standard fonts are
longer, you may need to use font aliases.

Chapter 6 — Designing Bar Code Labels

88 Fingerprint Developer’s Guide

Text and bar code records can contain both fixed and variable data. The fixed data
(max. 20 characters) are entered in the layout record. A parameter (bytes 43 and 44)
specifies how many characters (starting from the first character) of the fixed data
that will be printed or used to generate the bar code. Possible variable data will be
appended to the fixed data at the position specified in bytes 43 and 44.

The LAYOUT statement does not support multi-line text fields.

About Layout Requirements
You must follow these rules when you create a layout:

• Each record must be exactly 52 bytes long, and the last character must be a
semicolon (;).

• It is essential that the different types of data are entered exactly in the correct
positions. Any input in unused bytes will be ignored.

• The records are executed in the order they are entered. The reference number at
the start of each record does not affect the order of execution. This implies that a
barfont record will affect all following bar code records, but not those already
entered.

• When using bar code interpretation, do not enter a bar code record directly after
a record with inverse printing, since the bar code interpretation will be inverted
as well. A text or logotype record without inverse printing between the bar code
record and the inversed record will reset printing to normal.

• If a magnification larger than 9 is required, you cannot enter it as a digits,
because there is only one byte available. Instead, enter the character, the ASCII
decimal number of which minus 48 corresponds to the desired magnification.
Thus, if magnification 10 is desired, enter the colon character (:), because its
ASCII number (58 dec) minus 48 = 10.

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 89

Syntax of Layout File Records (1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

LOGOTYPE RECORD (by name):
Element No. (00–FF hex)

Type of record
Direction (1–4)

Alignment (1–9)
X-Position (0–9999)

Y-Position (0–9999)
Logotype name (10 char) Not used

Byte No.

Example

Vertical mag.
Horizontal mag.

Not used

01A13300 800 GLOBE.1 11

Not used
Normal (blank) or
Inverse printing (I_)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BAR CODE RECORD:
Element No. (00–FF hex)

Type of record
Direction (1–4)

Alignment (1–9)
X-Position (0–9999)

Y-Position (0–9999)
Barcode name (10 char.)

Fixed Data (max. 20 char.)

Char. to be printed
in byte 23-42

Byte No.

Example

Wide/narrow bar
ratio

Magnification
Not used

Height

01B17100 300 CODE39 ABCDEFGHIJKLMNOPQRST3 311 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

TEXT RECORD:
Element No. (00–FF hex)

Type of record
Direction (1–4)

Alignment (1–9)
X-Position (0–9999)

Y-Position (0–9999)
Font name (10 char.) Fixed Text (max. 20 char.)

Char. to be printed
in byte 23-42

Byte No.

Example

Normal (blank) or
Inverse printing (I_)

Vertical mag.
Horizontal mag.

Not used

01C11130 450 SW030RSN.1Fixed Text 0 I 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BAR CODE EXTENDED FIELD RECORD:
Element No. (00–FF hex)

Type of record
Security (0-9)

Aspect height ratio (0-9)
Aspect width ratio (0-9)

Rows (0-99)
Columns (0-99)

Truncate (0-9) Not used

Not used

Byte No.

Example

Not used

Not used
Not used

Not used

01E212 0 0 0

Chapter 6 — Designing Bar Code Labels

90 Fingerprint Developer’s Guide

Syntax of Layout File Records (2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BAR CODE INTERPRETATION RECORD:
Element No. (00–FF hex)

Type of record
Barfont on/off
0=Off
1=On

Byte No.

Example 01H1 SW050RSN.1
Not used

Not used

Not used

Not used
Not used

Not used
Not used

Not usedBarfont name (10 char.) Not used

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BARADJUST RECORD:
Element No. (00–FF hex)

Type of record
Not used

Not used
Baradjust left (0-9999)

Baradjust right (0–9999)
Not used Not used

Not used

Byte No.

Example

Not used

Not used
Not used

Not used

01J 50 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

LOGOTYPE RECORD (by number):
Element No. (00–FF hex)

Type of record
Direction (1–4)

Alignment (1–9)
X-Position (0–9999)

Y-Position (0–9999)
Not used Logotype Number (0-99)

Byte No.

Example

Vertical mag.
Horizontal mag.

Not used

01L13300 800 1 11

Not used
Normal (blank) or
Inverse printing (I_)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

LINE RECORD:
Element No. (00–FF hex)

Type of record
Direction (1–4)

Alignment (1–9)
X-Position (0–9999)

Y-Position (0–9999)
Line length (0-6000) Line thickness (0-6000)

Not used

Byte No.

Example

Not used
Not used

Not used
Not used

01S11100 100 300 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

BOX RECORD:
Element No. (00–FF hex)

Type of record
Direction (1–4)

Alignment (1–9)
X-Position (0–9999)

Y-Position (0–9999)
Box Width (0–6000) Box height (0-6000)

Not used

Byte No.

Example

Not used
Not used

Not used
Line thickness
(0-999)

05X11100 440 300 100 5

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 91

This example shows how a small layout file can be composed.

Creating a Logotype Name File
The next step is to create a logotype name file. A logotype name file is required even
if you are not using a logotype in your layout, in which case the file can be empty. In
the layout file, you can set a logotype record to use logotypes specified either by
name or by number.

If you specify logotype-by-name (record type A), the printer memory is searched for
an image with the specified name. A logotype-by-name file is composed by a number
of records with a length of 10 bytes each that contain the image names, for example:

10 OPEN “LOGNAME.DAT” FOR OUTPUT AS 1
20 PRINT#1, “GLOBE. ”
30 PRINT#1, “GLOBE.2 ”
40 PRINT#1, “DIAMONDS.1”
50 PRINT#1, “DIAMONDS.2”;
60 CLOSE 1

If you specify logotype-by-number (record type L), you must have a logotype name
file. A logotype-by-number file is composed by a number of records with a length of
13 bytes each. The first 2 bytes is a reference number (0-99), the third byte is always a
colon (:), and the following 10 bytes are used for the image name:

10 OPEN “LOGNAME.DAT” FOR OUTPUT AS 1
20 PRINT#1, “0 :GLOBE.1 ”
30 PRINT#1, “1 :GLOBE.2 ”
40 PRINT#1, “2 :DIAMONDS.1”
50 PRINT#1, “3 :DIAMONDS.2”;
60 CLOSE 1

10 OPEN “LAYOUT.DAT” FOR OUTPUT AS 2

20 PRINT #2, “0 1 H 1 F O N T 1 “;

30 PRINT #2, “0 2 C 1 1 1 0 0 6 5 0 F O N T 1 F i x e d T e x t 1 1 I 2 2 “;

40 PRINT #2, “0 2 C 1 1 1 3 0 4 5 0 F O N T 1 F i x e d T e x t 0 1 1 “;

50 PRINT #2, “0 3 B 1 7 1 0 0 3 0 0 C O D E 3 9 A B C 3 3 1 1 1 0 0 “;

60 PRINT #2, “0 4 A 1 2 3 0 0 8 0 0 G L O B E . 1 1 1 “;

70 PRINT #2, “0 5 X 1 1 1 0 0 4 4 0 3 0 0 1 0 0 5 “;

80 PRINT #2, “0 6 S 1 1 1 0 0 1 0 0 3 0 0 1 0 “;

90 CLOSE 2

Note: The last record in a sequential file must be appended by a semicolon (;).

Chapter 6 — Designing Bar Code Labels

92 Fingerprint Developer’s Guide

Creating a Data File or Array
You also need a data file or data array. If you use a data file, you must use an error
file, and if you use a data array, you must use an error array. This file or array
contains variable data that is placed in the position specified by the layout. Each
data record starts with a hexadecimal element number (00-FF hex) that associates
the data to the layout record or records that start with the same element number.
Thus you can for example use a single data record to generate a number of text fields
with various locations and appearances as well as to generate a bar code.

If you for some reason do not use variable data, you will still need to create either an
empty data file or an empty data array.

Create a data array like this:

10 DIM LAYDATA$(7)
20 LAYDATA$(0)=“01Mincemeat”
30 LAYDATA$(1)=“0AVeal”
40 LAYDATA$(2)=“17Roast Beef”
50 LAYDATA$(3)=“3FSausages”
60 LAYDATA$(4)=“02Venison”
70 LAYDATA$(5)=“06Lamb Chops”
80 LAYDATA$(6)=“7CPork Chops”

You can create a data file with the same content in a similar way:

10 OPEN “LAYDATA.DAT” FOR OUTPUT AS 1
20 PRINT#1,“01Mincemeat”
30 PRINT#1,“0AVeal”
40 PRINT#1,“17Roast Beef”
50 PRINT#1,“3FSausages”
60 PRINT#1,“02Venison”
70 PRINT#1,“06Lamb Chops”
80 PRINT#1,“7CPork Chops”;
90 CLOSE 1

Creating an Error File or Array
The last requirement is an error file or array that can store any errors that may occur.
If you use a data array, you must use an error array, and if you use a data file, you
must use an error file. The following errors will be stored and presented in said
order:

1 If an error occurs in a layout record, the number of the record (1...nn) and the
error number is placed in the error array or file.

2 If a data record cannot be used in a layout record, an the index of the unused
data record (0...nn) plus the error code -1 is placed in the error array or file.

Creating an Error Array
Error arrays must be large enough to accommodate all possible errors. Thus, use a
DIM statement to specify a one-dimensional array with a number of elements that is
twice the sum of all layout records plus twice the sum of all data records. You should
also include some routine that reads the array, for example:

Note: The last record in a sequential file must be appended by a semicolon (;).

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 93

10 DIM QERR%(28)
20 QERR%(0)=0
.....
190 IF QERR%(1)=0 THEN GOTO 260
200 PRINT “-ERROR- LAYOUT 1”
210 I%=0
220 IF QERR%(I%)=0 THEN GOTO 260
230 PRINT “ERROR ”;QERR%(I%+1);“ in record”;QERR%(I%)
240 I%=I%+2
250 GOTO 220
260 PRINTFEED

Creating an Error File
Error files require a little more programming to handle the error message, for
example:

220 OPEN “ERRORS.DAT” FOR INPUT AS 10
230 IF EOF(10) THEN GOTO 280 ELSE GOTO 240
240 FOR A%=1 TO 28
250 INPUT #10, A$
260 PRINT A$
270 NEXT A%
280 PRINTFEED

Using the Files in a LAYOUT Statement
Now, you have all the files you need to issue a LAYOUT statement. This statement
combines the layout file, the logotype file, the data file/array, and the error file/array
into a printable image. Depending on whether you have selected to use data and
error files or arrays, the statement will have a somewhat different syntax:

For files:

LAYOUT F, <layout file>, <logotype file>,<data file>,<error
file>

For arrays:

LAYOUT <layout file>,<logotype file>,<data array>,<error array>

The example below shows a simple layout created using the layout statement in
combination with data and error arrays:

Note: The loop in line 240 must be large enough to accommodate all possible errors.

Note: You cannot omit any file or array, since the syntax requires a file name or array
designation in each position. For example, you must create an empty logotype file if
your design does not use a logotype field.

10 DIM QERR%(28)

20 LAYDATA$(0)=“02Var. input”

30 LAYDATA$(1)=“03 PRINTER”

40 QERR%(0)=0

Chapter 6 — Designing Bar Code Labels

94 Fingerprint Developer’s Guide

50 OPEN “LOGNAME.DAT” FOR OUTPUT AS
1

60 PRINT #1, “GLOBE.1”;

70 CLOSE 1

80 REM:LAYOUT FILE

90 OPEN “LAYOUT.DAT” FOR OUTPUT AS
2

100 PRINT
#2,

“01H1 FONT1 “;

110 PRINT
#2,

“02C11100 650 FONT1 Fixed Text 11I 22 “;

120 PRINT
#2,

“02C11130 450 FONT1 Fixed Text 0 11 “;

130 PRINT
#2,

“03B17100 300 CODE39 ABC 3 311 100“;

140 PRINT
#2,

“04A12300 800 GLOBE.1 11 “;

150 PRINT
#2,

“05X11100 440 300 100 5 “;

160 PRINT
#2,

“06S11100 100 300 10 “;

170 CLOSE 2

180 LAYOUT
“LAYOUT.DAT”,“LOGNAME.DAT”,LAYDATA$,
QERR%

190 IF QERR%(1)=0 THEN GOTO 260

200 PRINT “-ERROR-
LAYOUT 1”

210 I%=0

220 IF QERR%(I%)=0 THEN GOTO 260

230 PRINT “ ERROR “; QERR%(I%+1); “ in record ”; QERR%(I%)

240 I%=I%+2

250 GOTO 220

260 PRINTFEED

RUN

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 95

Creating a Simple Label

This tutorial walks you through creating a short Fingerprint program that prints a
simple label. For more information on Fingerprint commands and syntax, see the
Fingerprint Command Reference Manual.

To design and print a simple label

1 Connect the printer to a host PC. For help, see “Sending Fingerprint
Commands to the Printer” on page 3.

2 In HyperTerminal, enter the following text. Press Enter at the end of each line:

NEW
10 PRPOS 10,10
20 PRBOX 430,340,15
200 PRINTFEED
300 END

This code specifies a box 430 dots high and 340 dots wide, with a line thickness
of 15 dots, and inserted at position X=10, Y=10.

3 Type RUN and press Enter. The printer prints this label:

4 Enter the following text:

30 PRPOS 30,30
40 PRIMAGE “GLOBE.1”

This code specifies an image field at position X=30, Y=30, using the image
named “GLOBE.1” in printer memory.

Feed direction

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 6 — Designing Bar Code Labels

96 Fingerprint Developer’s Guide

5 Type RUN and press Enter. The printer prints this label:

6 Enter the following text:

50 PRPOS 75,270
60 BARTYPE “CODE39”
70 PRBAR “ABC”

This code specifies a bar code field at location X=75, Y=270, using Code 39, with
the data “ABC”.

7 Type RUN and press Enter. The printer prints this label:

8 Enter the following text:

1 BARFONT ON
2 BARFONT “Univers”, 6

This code specifies a bar code interpretation field using 6-point Univers font.

GLOBE.1 image

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 97

9 Type RUN and press Enter. The printer prints this label:

10 Enter the following text:

80 PRPOS 25,220
90 FONT “Univers”, 6
100 PRTXT “My FIRST label”

This code specifies a single-line text field at location X=25, Y=220, using 6-point
Univers font, with the text “My FIRST Label”.

11 Type RUN and press Enter. The printer prints this label:

Bar code
interpretation field

Single-line text field

Chapter 6 — Designing Bar Code Labels

98 Fingerprint Developer’s Guide

12 Type LIST and press Enter. The program lines are listed in ascending order:

13 To change any program line, you can rewrite the line using the same line
number.

Enter the following text, which repositions the text field so the left side of the
field is aligned with the left side of the bar code field:

80 PRPOS 75,220

14 Type RUN and press Enter. The printer prints this label:

15 (Optional) To save your program, enter the following text and then press Enter:

SAVE “LABEL1”

Your program is saved in the printer memory with the filename “LABEL1.PRG”.

Chapter 6 — Designing Bar Code Labels

Fingerprint Developer’s Guide 99

Handling Errors With ERRHAND.PRG

The program you just created is unlikely to have caused any errors. However, when
writing more complex programs you may find use for an error handler. For this
purpose, Intermec includes ERRHAND.PRG in the firmware.

ERRHAND.PRG contains subroutines that displays the type of error on the printer
display (for example, “Out of paper” or “Head lifted”), prints the error number on
your screen, and assigns subroutines to some of the keys on the keyboard. There is
also a subroutine that performs a PRINTFEED with error-checking. The
ERRHAND.PRG occupies lines 10, 20, and 100000-1900000.

Renumbering Lines When Merging Files
If ERRHAND.PRG is merged with the program you just wrote, lines 10 and 20 in
your program will be replaced with lines 10 and 20 from ERRHAND.PRG. Therefore
you have to renumber your program, so that your program begins with an
unoccupied number, for example 50, before ERRHAND.PRG is merged:

RENUM 50,1,10
Ok

LIST

50 BARFONT ON
60 BARFONT “Univers”,6
70 PRPOS 10,10
80 PRBOX 400,340,15
90 PRPOS 30,30
100 PRIMAGE “GLOBE.1”
110 PRPOS 75,270
120 BARTYPE “CODE39”
130 PRBAR “ABC”
140 PRPOS 75,220
150 FONT “Univers”,6
160 PRTXT “My FIRST label”
170 PRINTFEED
180 END
Ok

Merging Programs
Now your label-printing program LABEL1.PRG will not interfere with
ERRHAND.PRG and you can merge the two programs into a single program. In
fact, you will create a copy of ERRHAND.PRG which is merged into LABEL1.PRG.
Thus the original ERRHAND.PRG can be merged into more programs later:

MERGE “/rom/ERRHAND.PRG”

Note: To use ERRHAND.PRG you must merge it with your program. For
information, see “Merging Programs” in this section.

Chapter 6 — Designing Bar Code Labels

100 Fingerprint Developer’s Guide

Using the Print Key
Instead of using a PRINTFEED statement, we will use a subroutine in
ERRHAND.PRG. Because ERRHAND.PRG assigns functions to keys, you can create
a loop in the program to get a label every time you press Print:

160 GOSUB 500000
170 GOTO 170
RUN

Try pressing different keys on the printer keyboard. Only keys that have been
assigned a function in ERRHAND.PRG (Pause, Print, Setup, and Feed) will work.

You can break the program by simultaneously pressing the Shift and Pause keys.
Save the program again under the same name:

SAVE “LABEL1”

The previously saved program “LABEL1.PRG” is replaced by the new version.

ERRHAND.PRG can easily be modified to fit into more complex programs and
Intermec recommends that you include it in your programs until you are skilled
enough to create your own routines for error handling. For more information, see
“Error Handling” on page 123.

101

7
Controlling the Printer

This chapter describes how to control various functions in the printer and
includes these topics:

• Using Fingerprint to Control the Printer

• Controlling Media Feed

• Controlling Printing

• Using the Printer Keypad

• Using the Printer Display

• Controlling the LEDs and Beeper

• Setting the Date and Time

• Using Setup Mode Programmatically

• Using the SYSVAR System Variable

• Checking Hardware and Firmware Versions

• Checking Immediate Mode and STDIO Status

• Restarting the Printer

• About Printer Memory

• Using the Industrial Interface

Chapter 7 — Controlling the Printer

102 Fingerprint Developer’s Guide

Using Fingerprint to Control the Printer

Fingerprint includes many commands you can use to control printer operation,
including handling media, settings for individual print jobs, conditions after
printing, and setting the date and time for the printer real-time clock.

For specific printer information, or for details on media types and compatibility
with your printer, see the printer user’s guide.

Controlling Media Feed

Use these Fingerprint commands to control the media feed without printing any
labels:

• CLEANFEED - Runs the printer media feed mechanism in order to facilitate
cleaning of the platen roller.

• TESTFEED - Adjusts the label stop/black mark sensor while feeding out a
number of blank forms or a specified lengh of media.

• FORMFEED - Feeds out a blank label (or similar) or optionally feeds out or pulls
back a specified amount of media without printing.

• LBLCOND - Overrides the media feed setup.

• ACTLEN - Returns the length of the most reccently executed TESTFEED,
FORMFEED, or PRINTFEED statement.

When a FORMFEED, TESTFEED, or PRINTFEED statement is executed and the
media is fed out, the label stop sensor (LSS) on the printer detects the front edge of
each new label, the rear edge of each detection gap, or the front edge of each black
mark.

The printer Start Adjust and Stop Adjust settings determine how much of the media
is fed out or pulled back before and after a FORMFEED, TESTFEED, or
PRINTFEED statement is executed. For more information, see the printer user’s
guide.

Adjusting Media Feed Distance With TESTFEED
After loading a new supply of media into the printer, send a TESTFEED command
to adjust the media feed distance. The LSS determines label length by measuring the
distance between the forward edges of two consecutive labels, and adjusts feed
distance accordingly. The same principle applies to tickets or tags with detection
gaps and tickets with black marks.

There are several ways to let the program control media feed without changing the
setup.

Chapter 7 — Controlling the Printer

Fingerprint Developer’s Guide 103

Feeding Media With FORMFEED
A FORMFEED statement causes the printer to feed out a complete blank label. You
can also specify a positive or negative distance (measured in printhead dots) to move
the media.

However, if there is an error condition such as “printhead lifted” or “out of media,”
FORMFEED has no effect.

Although you can use a FORMFEED statement to feed the media in small
increments during program execution, for best results Intermec recommends that
you make adjustments to the printer Start Adjust and Stop Adjust values instead.
You can also use a LBLCOND statement to override the printer Start Adjust and
Stop Adjust values when necessary, as described in the next section.

Overriding Start and Stop Adjust Values With LBLCOND
Use a LBLCOND statement to override the current Start Adjust and Stop Adjust
values. LBLCOND can also disable the LSS or black mark sensor (BMS) for a
specified length of media feed, such as when using irregularly shape labels, or when
text or pictures on the backside of a ticket are being detected as black marks.

LBLCOND also allows you to choose between three modes for controlling the
printing of very short labels. For information, see the Intermec Fingerprint
Command Reference Manual.

Rotating the Platen Roller With CLEANFEED
CLEANFEED rotates the platen roller forward or backward as specified.
CLEANFEED is equivalent to FORMFEED, but will work regardless of any error
conditions such as “printhead lifted” or “out of media.”

Checking Media Feed Distance With ACTLEN
This function returns the approximate distance (in dots) of most recently executed
media feed operation. For example, use the ACTLEN command to determine the
length of the labels before printing a list, so the list can be divided into portions that
fit the labels:

10 FORMFEED
20 PRINT ACTLEN
RUN

Note: Intermec recommends that you use a CLEANFEED statement to remove
labels that may be stuck on the platen roller. Manually pulling stuck media may
damage the print mechanism.

http://epsfiles.intermec.com/eps_files/eps_man/1-960597-06%20PRM%20DP%208.60.pdf

http://epsfiles.intermec.com/eps_files/eps_man/1-960597-06%20PRM%20DP%208.60.pdf

Chapter 7 — Controlling the Printer

104 Fingerprint Developer’s Guide

Controlling Printing

This section describes Fingerprint commands used in connection with printing bar
code labels.

Enabling the Automatic Paper Cutter With CUT ON
A CUT statement activates the optional paper cutter independently from a
PRINTFEED statement. The relation between the media and the cutting edge when
a CUT statement is executed determines where the media is cut off. Because the
distance from the printhead to the cutting edge is longer than the printhead-to-tear-
bar distance, media feed may need to be adjusted by changing the Start Adjust and
Stop Adjust values on the printer.

A CUT ON or CUT OFF statement enables and disables automatic cut-off that has
been initiated by a PRINTFEED statement, and can also specify a distance to feed
the media before and after cutting.

Enabling the Label Taken Sensor With LTS& ON
This statements enables or disables the optional label-taken sensor (LTS). When the
LTS is enabled, the print job stops when a label is detected in the printer outfeed
slot, and resumes printing after the label has been removed.

Repeating the Last Printing Operation With PRINTFEED
At execution of a PRINTFEED statement, the printer runs the last program that
included printing instructions such as field content or positioning, and prints one
copy. You can specify more than one copy, or the number of copies to be reprinted
after an interruption. The printer does not adjust its media feed before printing.

After a PRINTFEED statement, these settings are reset to default values:

Settings after a Printfeed

Setting Default

ALIGN 1

BARFONT “Univers”, 12, 0, 6, 1,100, OFF

BARFONT ON/OFF OFF

BARHEIGHT 100

BARMAG 2

BARRATIO 3, 1

BARSET “INT2OF5”, 3, 1, 2, 100, 2, 1, 2, 0, 0

BARTYPE “INT2OF5”

DIR 1

FONT “Univers”, 12, 0, 100

INVIMAGE NORIMAGE

MAG 1, 1

PRPOS 0, 0

Chapter 7 — Controlling the Printer

Fingerprint Developer’s Guide 105

This affects new statements executed after the PRINTFEED statement, but not
statements already executed.

In this example, five identical labels are printed:

10 PRPOS 100,100
20 FONT “Univers Bold”,14,10,80
30 PRTXT “TEST LABEL”
40 PRINTFEED 5
RUN

This example prints five copies of the same label, numbered consecutively:

10 FOR A%=1 TO 5
20 PRPOS 100, 100
30 FONT “Univers Bold”,14,10,80
40 PRTXT “LABEL ”;A%
50 PRINTFEED
60 NEXT A%

RUN

Enabling Manual Printing With PRINT KEY ON
A PRINT KEY ON statement enables a single PRINTFEED operation when the
Print key on the printer keypad is pressed manually. The default is PRINT KEY
OFF. These commands can only be issued in the Immediate Mode and in the
Intermec Direct Protocol.

Checking the Transfer Ribbon and Printhead With SYSVAR
A number of parameters in the system variable SYSVAR can be used to check the
transfer ribbon or printhead:

• SYSVAR(20) returns if the printer is set up for direct thermal or transfer
printing.

• SYSVAR(21)returns the printhead density in dots per millimeter.

• SYSVAR(23) returns if a transfer ribbon is fitted or not.

• SYSVAR(26) returns if the transfer ribbon supply is low or not.

• SYSVAR(27) sets or returns conditions for label reprinting at an out-of-ribbon
condition.

For more information, see “Using the SYSVAR System Variable” on page 116.

Handling Faulty Dots With HEAD, SET FAULTY DOT, and BARADJUST
A faulty dot is a dot on the printhead that does not print properly, which can result
in white lines across a printed bar code label. The HEAD function identifies possible
faulty dots.

Use SET FAULTY DOT to mark specified dots on the printhead as faulty. You can
also revoke all previous SET FAULTY DOT statements by marking all dots as
correct.

Note: Some printhead faults, such as cracked or dirty dots, will not be detected by
this function because only the resistance is measured.

Chapter 7 — Controlling the Printer

106 Fingerprint Developer’s Guide

BARADJUST enables the firmware to track all faulty dots, and relocates the bar code
so the spaces between the bars are lined up with the faulty dots. This way, you can
print bar code labels immediately without loss of quality, although the printhead
should still be replaced.

The next example lists a program that checks the printhead for faulty dots and
warns the operator when a faulty dot is encountered. Pending printhead
replacement, the bar code is repositioned to ensure continued readability. Such a
program takes a few seconds to execute (there may be more than a thousand dots to
check), so it is advisable either to restrict the dot check to the part of the printhead
that corresponds to the location of the bar code, or to perform the test at startup
only.

10 OPEN “console:” FOR OUTPUT AS 10
20 IF HEAD(-1)<>0 THEN GOTO 9000
30 BEEP:D1$=“Printhead Error!”:D2$=“”:GOSUB 2000
40 GOSUB 1000
50 BARADJUST 20,20
60 GOTO 9000
1000 FUNCTEST “HEAD”,TMP$
1010 A$=“:” : TMP%=INSTR(TMP$,A$)+1
1020 RETURN
1030 SET FAULTY DOT -1
1040 QMEAN%=HEAD(-7)
1050 QMIN%=QMEAN%*85\100
1060 QMAX%=QMEAN%*115\100
1070 FOR I%=0 TO WHEAD%-1
1080 QHEAD%=HEAD(I%)
1090 IF QHEAD%>QMAX% OR QHEAD%<QMIN% THEN SET FAULTY DOT I%
1100 NEXT
2000 PRINT #10 : PRINT #10, LEFT$(D1$,16)
2010 PRINT #10, LEFT$(D2$,16);
2020 RETURN
9000 PRPOS 200,20
9010 BARTYPE “CODE39”
9020 BARRATIO 2,1 : BARMAG 2
9030 BARHEIGHT 150
9040 PRBAR “1234567890”
9050 PRINTFEED
9060 END

Checking Printhead Status With FUNCTEST or FUNCTEST$
The FUNCTEST statement checks the number of dots in the printhead and whether
or not the printhead is lifted, and places the result in a string variable.

The next example shows how to use FUNCTEST on a PF4i:

10 FUNCTEST “HEAD”, A$
20 PRINT “HEADTEST:”, A$
RUN

The printer returns (for example):

HEADTEST: HEAD OK,SIZE:832 DOTS
Ok

Note: The BARADJUST statement cannot be used for ladder bar codes, stacked bar
codes such as Code 16K, bar codes with horizontal lines such as DUN-14, EAN/UPC
bar codes, or two-dimensional bar codes such as PDF417.

Chapter 7 — Controlling the Printer

Fingerprint Developer’s Guide 107

The FUNCTEST$ function is similar to the FUNCTEST statement and is used for
the same purpose. The next example shows how to use FUNCTEST$ on a PF4i:

PRINT “HEADTEST:”, FUNCTEST$ (“HEAD”)

The printer returns (for example):

HEADTEST: HEAD OK,SIZE:832 DOTS
Ok

Reprinting Labels After Interruptions
If an error occurs during batch printing, or if printing is otherwise interrupted, there
are two ways to reprint lost or only partially printed labels without losing variable
data, such as counter values.

Instead of specifying the number of copies in a batch in a PRINTFEED statement,
you can specify how many copies of the last printed label in a batch should be
reprinted. The syntax is:

PRINTFEED -1,<number of copies to reprint>

For example, if a 100-label batch print job is interrupted by an out-of-ribbon
condition during the printing of label #70, and you specified that 2 copies should be
reprinted, label #70 will be printed twice when the error has been cleared.

The PRSTAT function can detect printing progress and report any print-related
error conditions. This makes it possible to create an error-handling routine that
automatically resumes interrupted print jobs and reprints lost labels.

About Batch Printing
Batch printing is the printing of many labels without stopping the media feed
motor between the labels. The labels may be exact copies, or the labels may differ
more or less in appearance.

When a PRINTFEED is executed, the printer renders the program instructions into
a bitmap pattern and stores the pattern in one of the two image buffers. The buffer
compensates for differences between processing time and printing time.

As the printer prints the label, it empties the image buffer. High print speeds empty
the image buffer more quickly. After the buffer is emptied, the printer processes the
next bitmap pattern and stores it in the second image buffer.

These Fingerprint commands can facilitate batch printing:

• FIELDNO - Divides the program into portions that can be cleared individually.

• CLL - Clears part or all of the image buffer.

• OPTIMIZE “BATCH” ON|OFF

If there are only small differences between the labels, write your program to use the
CLL and FIELDNO instructions to manage the buffers first, and process variable
data last.

Note: You can only reprint the most recently printed label.

Chapter 7 — Controlling the Printer

108 Fingerprint Developer’s Guide

Should the printer stop between labels, lower the print speed somewhat. Usually,
the overall time to produce a certain number of labels is more important than the
actual print speed. For more information on adjusting the print speed, see the
printer user’s guide.

Clearing the Print Buffer With CLL and FIELDNO
The image buffer stores the bitmap pattern of the label layout between processing
and printing. The image buffer can be cleared completely by a CLL statement, or
partially by using a CLL statement and the FIELDNO function:

• Complete clearing is obtained by a CLL statement without any reference to a
field, and is useful to avoid printing a faulty label after certain errors have
occurred.

• Partial clearing is used in connection with print repetition when only part of the
label should be modified between the copies. In this case, the CLL statement
must include a reference to a field, specified by a FIELDNO function. When a
CLL statement is executed, the image buffer is cleared from the specified field to
the end of the program.

In this example, the text “Month” is kept in the image buffer, and the names of the
months are cleared from the image buffer as soon as they are printed:

10 FONT “Univers Bold”,18
20 PRPOS 100,300
30 PRTXT “MONTH:”
40 PRPOS 100,200
50 A%=FIELDNO
60 PRTXT “JANUARY”:PRINTFEED
70 CLL A%
80 FONT “Univers Bold”,18
90 PRPOS 100,200
100 PRTXT “FEBRUARY”:PRINTFEED
110 CLL A%
120 FONT “Univers Bold”,18
130 PRPOS 100,200
140 PRTXT “MARCH”:PRINTFEED
150 CLL A%
RUN

Maintaining Print Speed With OPTIMIZE “BATCH” ON
Normally, after the first image buffer is emptied and printing is completed, the
printer processes the next bitmap pattern and stores it in the second image buffer.
Use an OPTIMIZE “BATCH” ON statement to enable processing and storage of the
next label image while the first label is still being printed. Thus, by switching
between the two image buffers, the printer can maintain a high print speed.

The default setting is OPTIMIZE “BATCH” OFF. However, OPTIMIZE “BATCH”
ON is automatically invoked if:

• a value >1 is entered for the PRINTFEED statement.“Using Conditional
Instructions” on page 16.

• the label taken sensor is disabled (LTS& OFF). This is the default.

• the paper cutter is disabled (CUT OFF). This is the default.

OPTIMIZE “BATCH” ON revokes OPTIMIZE “BATCH” OFF.

Chapter 7 — Controlling the Printer

Fingerprint Developer’s Guide 109

Interrupting Batch Printing
Batch printing is interrupted when an error occurs, but can also be interrupted by
pressing either Print or Pause on the printer keypad. Printing can be resumed by
pressing either of those keys again.

To prevent unauthorized use, each of these keys can be disabled using a MAP or
KEYBMAP$ instruction to map it to an ASCII value other than ASCII 30 or 31 dec.

The Print key can also be enabled or disabled. For more information, see “Enabling
Manual Printing With PRINT KEY ON” on page 105.

Using the Printer Keypad

If your printer has a keypad, you can use it to:

• Control the printer in Setup Mode and Immediate Mode. In Setup Mode, keys
can enter input data if “console:” is OPENed for INPUT.

• Enter input data in the form of ASCII characters.

• Make the program branch to subroutines according to ON KEY...GOSUB
statements.

To prevent unauthorized or accidental use, keys can be mapped to unneeded or
unnecessary ASCII values using MAP or KEYBMAP$ commands.

This section describes the Fingerprint commands you use to manage keypad input.
For more information, see the Fingerprint Command Reference Manual.

Branching to Subroutines With KEY...ON and ON KEY...GOSUB
To make the program branch to a subroutine when a specific key is pressed, first you
need to enable the key using KEY...ON. Then you use ON KEY...GOSUB to specify
the subroutine to be branched to. For more information, see

For the KEY...ON command, keys are specified by identification (id.) numbers. Each
key has two id. numbers, one for its unshifted position and another for its shifted
position. The id. number of the shifted key is equal to its unshifted id. number +
100. For example, the F1 key has id. number 10 in unshifted position, but id.
number 110 in shifted position.

If a key is remapped, its id. number follows the key to its new position.

In the following example, F1 and F2 are enabled and used to branch to different
subroutines. The keys are specified by their id. numbers (10 and 11 respectively):

10 ON KEY (10) GOSUB 1000
20 ON KEY (11) GOSUB 2000
30 KEY (10) ON: KEY (11) ON
40 GOTO 40
50 END
1000 PRINT “You have pressed F1”
1010 RETURN 50
2000 PRINT “You have pressed F2”
2010 RETURN 50
RUN

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 7 — Controlling the Printer

110 Fingerprint Developer’s Guide

Defining Audio Beeps With KEY BEEP
Each time a key is pressed, the printer beeps (a 1200 Hz tone for 0.030 seconds). The
frequency and duration of the signal can be globally changed for all keys using a
KEY BEEP statement. Setting the frequency to a value higher than 9999 turns off
the beep for all keys.

Entering ASCII Characters With INPUT#, INPUT$, or LINE INPUT#
Provided “console:” is OPENed for sequential INPUT, the keys can be used to enter
ASCII characters to the program. For more information and an example, see “Input
From a Random File” on page 48.

Remapping the Keypad With KEYBMAP$
Printer keypads are fully remappable (exception for the Shift key), using the
KEYBMAP$ command. Each key can produce two ASCII characters (shifted and
unshifted). Mapping also decides the ID numbers for the keys.

The basis of the remapping process is the position number of each key. For more
information, see “Character Sets and Keywords” on page 133.

The current keyboard mapping can be read to a string variable using the
KEYBMAP$ command. This example reads the unshifted characters on the
keyboard of a PF4i. Non-existing key positions get ASCII value 0:

10 PRINT “Pos”,“ASCII”,“Char.”
20 A$=KEYBMAP$(0)
30 FOR B%=1 TO 64
40 C$=MID$(A$,B%,1)
50 E%=ASC(C$)
60 PRINT B%,E%,C$
70 NEXT
RUN

You can also use the KEYBMAP$ instruction to remap the keyboard, with the
following syntax:

KEYBMAP$(n) = <string>

where:

n = 0 maps the unshifted characters in ascending position number order.

n = 1 maps the shifted characters in ascending position number order.

The string that contains the desired keyboard map should contain the desired
character for each of 64 key positions (in ascending order) regardless if the keyboard
contains that many keys.

Note: KEYBMAP$ instructions do not affect the printer in Setup Mode.

Note: Position numbers and ID numbers are not the same thing.

Chapter 7 — Controlling the Printer

Fingerprint Developer’s Guide 111

Characters that cannot be produced by the keyboard of the host can be substituted
by CHR$ functions, where the character is specified by its ASCII decimal value
according to the selected character set.

Non-existing key positions are mapped as NUL (CHR$(0)).

Using the Keypad in Immediate Mode
When a printer has been placed in Immediate Mode (by sending an IMMEDIATE
ON statement), these keys on the printer keypad work as follows:

• The Print key or button produces a FORMFEED operation. If the printhead is
lifted, pressing Print produces a CLEANFEED operation, which runs the platen
roller several times to facilitate cleaning. During batch printing, pressing Print
interrupts or resumes printing.

• Pause interrupts or resumes batch printing.

• Feed works the same way as the Print key.

• Pressing Shift + Feed at the same time produces a TESTFEED operation.

• Setup places the printer in Setup Mode.

• Pressing i displays information on the communication channels. The left and
right arrow keys toggle between communcations channels when channel
information is displayed.

ASCII Decimal Values for Special Keys

Key Unshifted Shifted

F1 1 129

F2 2 130

F3 3 131

F4 4 132

F5 5 133

Pause 30 158

Setup 29 157

Feed 28 156

Enter 13 141

C (Clear) 8 136

Print 31 159

Note: In Immediate Mode, Print can also start a print job if the key has been
enabled using a PRINT KEY ON statement. For more information, see
“Enabling Manual Printing With PRINT KEY ON” on page 105.

Chapter 7 — Controlling the Printer

112 Fingerprint Developer’s Guide

Using the Printer Display

If your printer has an LCD screen, you can use Fingerprint commands to control the
printer screen. These commands have no effect if you are using an icon printer.

When the printer is placed in Setup mode, the character set is automatically
switched to US-ASCII. When the printer exits Setup mode, the previous mapping is
restored.

Customizing the Printer Display
Several different images can appear on your printer display to notify you of an event,
alert you to errors, or give feedback when you press a key. You can use these default
images in your programs, or add custom images. You can also override some of the
default images to show custom images instead.

• Use a DISPLAY STATE statement to show an icon in the notification area.

• Use a DISPLAY KEY statement to show an image when a key is pressed.

• Use a DISPLAY IMAGE statement to show an image when an error occurs.

Each of these commands has predefined values that are associated with default
images stored on the printer. For more information on how to use custom images
with these commands, see the Fingerprint Command Reference Manual.

Controlling the LEDs and Beeper

If your printer has status LEDs instead of a display, you can control these LEDs
using a Fingerprint program.

Using an LED ON|OFF|BLINK Statement
Use the LED ON|OFF|BLINK statement to control the LEDs. This statement can
turn the Ready or Error LEDs on and off, or it can blink the LEDs (at 0.4 sec
intervals) with or without incoming data.

In this example, the Ready LED (0) is lit until an error occurs, at which time the
Error LED (1) is lit and remains lit until the error is cleared. A suitable error can be
generated by running the program with the printhead lifted.

10 LED 0 ON
20 LED 1 OFF
30 ON ERROR GOTO 1000
40 PRPOS 100,100
50 FONT “Univers Bold”,36
60 PRTXT “OK!”
70 PRINTFEED
80 LED 0 ON
90 LED 1 OFF
100 END
1000 LED 0 OFF
1010 LED 1 ON
1020 RESUME
RUN

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 7 — Controlling the Printer

Fingerprint Developer’s Guide 113

Using a BEEP or SOUND Statement
In addition to the visual signals from the display and LEDs, you can use a BEEP or
SOUND statement for audible notification if your printer has a beeper.

The beeper can be controlled by either a BEEP statement, which gives a short shrill
signal, or by a SOUND statement, which allows you to vary both the frequency and
duration. The SOUND statement even allows you to compose your own melodies.

In this example, a warning signal is emitted from the beeper, for example when the
error “printhead lifted” occurs and keeps sounding until the error is cleared. A short
beep indicates that the printer is OK.

10 ON ERROR GOTO 1000
20 PRPOS 100,100
30 FONT “Univers”, 36
40 PRTXT “OK!”
50 PRINTFEED : BEEP
60 END
1000 SOUND 880,25 : SOUND 988,25 : SOUND 30000,10
1010 RESUME
RUN

Setting the Date and Time

Some Intermec printers are equipped with a real-time clock (RTC) with battery
backup. If an RTC is installed, the internal clock is updated from the RTC at each
startup.

If no RTC is installed, you need to manually set the clock using either a DATE$ or a
TIME$ variable, or an error occurs when trying to read the date or time. If only the
date is set, the internal clock starts at 00:00:00, and if only the time is set, the
internal clock starts at Jan 01 1980. After setting the internal clock, you can use the
DATE$ and TIME$ variables the same way as when an RTC is fitted, until a power
off or REBOOT causes the date and time values to be lost.

The built-in calendar runs from 1980 through 2048 and corrects illegal values
automatically (for example, 081232 is corrected to 090101).

In addition to the standard formats (YYMMDD and HHMMSS), other formats for
date and time can be specified by these Fingerprint commands:

• FORMAT DATE$

• FORMAT TIME$

• NAME DATE$

• NAME WEEKDAY$

Reading the Clock and Calendar
These Fingerprint commands are used to read the clock and calendar:

• <svar>=DATE$

• <svar>=DATE$(“F”) - Returns the current date in the format specified by
FORMAT DATE$ to a string variable.

• <svar>=TIME$

Chapter 7 — Controlling the Printer

114 Fingerprint Developer’s Guide

• <svar>=TIME$(“F”) - Returns the current time in the format specified by
FORMAT TIME$ to a string variable.

• DATEADD$

• TIMEADD$

• DATEDIFF

• TIMEDIFF

• WEEKDAY

• WEEKDAY$ - Returns the name of the weekday of a specified date in plain text
according to the weekday names specified by NAME WEEKDAY$, or if such a
name is missing, the full name in English.

• WEEKNUMBER

• TICKS

In most cases, you can specify the current date or time using DATE$ or TIME$
respectively, as in this example:

WEEKDAY$ (DATE$)
TIMEDIFF (TIME$, “120000”)

The next example shows how the date and time formats are set and the names of
months are specified. Finally, a number of date and time parameters printed to the
standard OUT channel:

10 FORMAT DATE$ “MMM/DD/YYYY”
20 FORMAT TIME$ “hh.mm pp”
30 NAME DATE$ 1, “Jan”:NAME DATE$ 2, “Feb”
40 NAME DATE$ 3, “Mar”:NAME DATE$ 4, “Apr”
50 NAME DATE$ 5, “May”:NAME DATE$ 6, “Jun”
60 NAME DATE$ 7, “Jul”:NAME DATE$ 8, “Aug”
70 NAME DATE$ 9, “Sep”:NAME DATE$ 10, “Oct”
80 NAME DATE$ 11, “Nov”:NAME DATE$ 12, “Dec”
90 A%=WEEKDAY(DATE$)
100 PRINT WEEKDAY$(DATE$)+“”+DATE$(“F”)+“”+TIME$(“F”)
110 PRINT “Date:”,DATE$(“F”)
120 PRINT “Time:”,TIME$(“F”)
130 PRINT “Weekday:”, WEEKDAY$(DATE$)
140 PRINT “Week No.:”,WEEKNUMBER (DATE$)
150 PRINT “Day No.:”, DATEDIFF (“030101”,DATE$)
160 PRINT “Run time:”, TICKS\6000;“ minutes”
170 IF A%<6 THEN PRINT “It is ”;WEEKDAY$(DATE$);

“. Go to work!”
180 IF A%>5 THEN PRINT “It is ”;WEEKDAY$(DATE$);

“. Stay home!”
RUN

The printer returns (for example):

Monday Apr/03/2003 08.00 am
Date: Apr/03/2003
Time: 08.00 am
Weekday: Thursday
Week No.: 14
Day No.: 93
Run time: 1 minutes
It is Thursday. Go to work!

Chapter 7 — Controlling the Printer

Fingerprint Developer’s Guide 115

This example shows how the TICKS function is used to delay the execution for a
specified period of time:

10 INPUT “Enter delay in sec’s: ”, A%
20 B%=TICKS+(A%*100)
30 GOSUB 1000
40 END
1000 SOUND 440,50(Start signal)
1010 IF B%<=TICKS THEN SOUND 880,100 ELSE GOTO 1010
1020 RETURN
RUN

Using Setup Mode Programmatically

To change a printer setup parameter as a part of the program execution, you can use
a SETUP statement.

A SETUP statement can:

• place the printer in Setup Mode for manual configuration (pressing keys on the
printer keypad). When the printer is in Setup Mode, it does not respond to
Fingerprint commands sent from a communications application.

• create a copy of the current setup and save it as a file, or return the current setup
to a specified communication channel.

• change some or all setup parameters according to a setup file.

• change a single parameter.

Reading the Current Setup
To read the current printer setup, use a SETUP WRITE statement to return the
setup to the standard OUT channel, as in this example:

SETUP WRITE “uart1:”

Creating a Setup File
1 Open a file for sequential output.

2 Use a PRINT# statement to enter each parameter you want to change. See the
SETUP command in the Fingerprint command reference manual for specific
syntax information.

3 Close the file.

Changing the Setup Using a Setup File
To change the setup based on a setup file, use a SETUP<filename> statement. If the
setup file is stored in another part of the printer memory than the current directory,
the file name should start with a reference to the correct path for the file.

In the following example, save the current setup under a new file name and then
create a setup file that changes the size of the transmit buffer on “uart1:”. Finally,
use the setup file to change the printer setup.

Chapter 7 — Controlling the Printer

116 Fingerprint Developer’s Guide

10 SETUP WRITE “SETUP1.SYS”
20 OPEN “SETUPTEST.SYS” FOR OUTPUT AS #1
30 PRINT#1,“SER-COM,UART1,TRANS BUF,2000”
40 CLOSE #1
50 SETUP “SETUPTEST.SYS”
RUN

Changing the Setup Using a Setup String
To change a single setup parameter without creating a file, use a SETUP statement
with a string with the same syntax as the corresponding parameter. Do not use a
leading PRINT# statement.

This example changes the “uart1:” settings:

SETUP “SER-COM,UART1,TRANS BUF,2000”

Saving the Setup
You can decide whether a change in the printer setup should be permanent or
temporary using SYSVAR(35):

• If SYSVAR(35) = 0 (default), the setup is saved as a file and remains effective after
a reboot or power down.

• If SYSVAR(35)=1, the setup is not saved, and the last saved setup values are
effective after a reboot or power down.

For more information, see the next section.

Using the SYSVAR System Variable

Some sensors and other conditions can be read or set using the SYSVAR system
variable. You can use SYSVAR to return the current conditions of a variable, when
can then affect your running program. For specific information on using SYSVAR,
see the Fingerprint Command Reference Manual.

The next table lists SYSVAR values and the information returned.

SYSVAR Values and Descriptions

Value Description

14 Returns the number of errors since last power on.

15 Returns the number of errors since the previously executed SYSVAR(15)
instruction.

16 Returns the number of bytes received at the execution of a STORE INPUT
statement.

17 Returns the number of frames received at the execution of a STORE INPUT
statement.

18 Returns or sets the verbosity level.

19 Returns or sets the type of error messages transmitted by the printer.

20 Returns 0 if the printer is set up for direct thermal or 1 if set up for thermal
transfer printing.

21 Returns the printhead density in dots/mm.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 7 — Controlling the Printer

Fingerprint Developer’s Guide 117

22 Returns the number of dots in the printhead.

23 Returns 1 if a transfer ribbon is detected, 0 otherwise.

24 Returns 1 if a power-up has been performed since last SYSVAR(24), or 0
otherwise.

26 Returns 1 if the ribbon sensor detects that the diameter of the ribbon supply roll
is equal to or less than the diameter specified in Setup Mode, or 0 otherwise.

27 Sets condition for label reprinting at out-of-ribbon error.

28 Decides if the information on the position of the media against the printhead
should be cleared or not when the printhead is lifted.

29 Returns Data Send Ready (DSR) condition on “uart2:”.

30 Returns Data Send Ready (DSR) condition on “uart3:”.

31 Returns last control character sent from the MUSE protocol (special
applications).

32 Returns the length of media (in 10-meter increments) that have been fed past the
printhead.

33 Returns Data Send Ready (DSR) condition on “uart1:”.

34 Sets or returns TrueType® character positioning mode.

35 Sets or returns permanent or volatile setup saving.

36 Sets or returns whether changes of program mode should be printed to the
Debug Std Out port in connection with debugging.

37 Sets or returns minimum gap length.

39 Enables or disables slack compensation.

41 Sets or returns conditions for overriding error detection at predefined feed
length.

42 Sets or returns conditions for aligning the gaps in the media with the tear bar.

43 Sets or returns file name conversion enabled or disabled.

44 Sets or returns current state of filtering of NUL characters during background
communication.

45 Returns the printhead resolution in dots per inch.

46 Returns 1 if the paper low sensor detects that the diameter of the media supply
roll is equal to or less than the diameter specified in Setup Mode, or 0 otherwise.

47 Sets or returns current state of using Start Adjust and Stop Adjust values
together with FORMFEED values.

48 Sets or returns use of bidirectional Direct Protocol.

49 Temporarily sets a lower print speed after a negative Start Adjust value.

50 Sets a lower print speed after lowering the printhead.

51 Sets the enabled limit for SYSVAR 49 and 50.

53 Sets or returns the highest allowed diamter (in mm) of the ribbon supply.

54 Modifies the DNS timeout value. Default is 5 (150 seconds). Each increment or
decrement equals ±30 sec.

SYSVAR Values and Descriptions (continued)

Value Description

Chapter 7 — Controlling the Printer

118 Fingerprint Developer’s Guide

Checking Hardware and Firmware Versions

The VERSION$ function returns one of three characteristics of the printer:

• VERSION$(0) returns the firmware version (for example, “P10.03.006424”).

• VERSION$(1) returns the printer family (for example, “PM43”).

• VERSION$(2) returns the CPU board (for example, “Platform version 1.0”).

VERSION$ allows you to create programs that work with several different printer
models. For example, you may use the VERSION$ function to determine the type of
printer and select the appropriate one of several different sets of setup parameters.

The next example selects a setup file according to the type of printer:

10 A$=VERSION$(1)
20 IF A$=“PF2i” THEN GOTO 1000
30 IF A$=“PF4i” THEN GOTO 2000
40 IF A$=“PM4i” THEN GOTO 3000
...
1000 SETUP “SETUP_PF2i.SYS”
1010 GOTO 50
2000 SETUP “SETUP_PF4i.SYS”
2010 GOTO 50
3000 SETUP “SETUP_PM4i.SYS”
3010 GOTO 50

Checking Immediate Mode and STDIO Status

Use the IMMEDIATE statement to check the current Immediate Mode status or the
status of the standard IN and OUT channels.

IMMEDIATE MODE prints a line to the standard OUT port that shows the status
(on or off) of the following modes:

• Execution - On indicates that a Fingerprint application is running.

• Immediate - On indicates the printer is in Immediate Mode.

• Input - On indicates that Direct Protocol is enabled.

• Layout input - On indicates that a layout is being recorded in Direct Protocol.

• Debug STDIO (DBSTDIO) - On indicates that the debug standard IO is active.

IMMEDIATE STDIO prints two lines to the standard OUT port with information
on the current communication settings for the STDIN and STDOUT channels.

Chapter 7 — Controlling the Printer

Fingerprint Developer’s Guide 119

Restarting the Printer

Restarting the printer has the same consequences as switching the power off and
then on. Use a REBOOT statement to restart the printer as part of the program
execution. When the printer is restarted, a number of things happen:

• The printer temporary memory (“tmp:”) is erased, which means that programs
not saved to “/c” or “usb1:” are lost, all buffers are emptied, all files are closed, all
date- and time-related formats are lost, all arrays are lost, and all variables are set
to zero. Fonts and images stored in the temporary memory are erased.

• All parameters in the Fingerprint instructions are reset to default.

• The printer performs a number of self-diagnostic tests, such as printhead
resistance check and memory checksum calculations.

• The printer checks for possible optional devices such as an interface board or
cutter.

• The printer memory is searched for possible startup programs. The first startup
program found is executed.

• The printer internal clock is reset to default, or updated from the real-time clock
if one is installed.

Restarting does not affect the printer setup, unless the printer hardware
configuration has changed during the power-off period (for example, if the
printhead has been replaced or an interface board has been installed or removed).

About Printer Memory

The printer memory consists of a number of parts, some with directories.

Permanent Memory
The permanent memory, “c:” or “/c” (also called /ram or “ram:” in some printer
manuals) resides in a flash memory SIMM. Additional flash SIMMs are also
included in the device “/c”.

You can also use a USB storage device (“usb1:”) as permanent memory.

At least one SIMM must always be present. It must have a boot sector and a number
of sectors containing the so called “kernel.” There is also a temporary area for media
feed info and odometer values. Some of these sectors are read-only and are included
in the device “/rom”.

The “/c” file system uses 1K blocks. Files smaller than 1K use 1K of space. File space
always rounds up, so a 4.5K file uses 5K of file space. A directory takes 1K, regardless
of how many files it contains. When there are no free blocks left in any sector and at
power up, the memory is automatically reorganized to save space. This process takes
some time and can make the flash memory comparatively slow.

Note: To provide compatibility with earlier versions of Intermec Fingerprint, the
device designations “ram:” and “c:” are interpreted as “/c” and “rom:” as “/rom”.

Chapter 7 — Controlling the Printer

120 Fingerprint Developer’s Guide

Temporary Memory
Temporary memory has no battery backup and is completely erased at power-off.
However, the following Fingerprint commands can be used to prevent variables
from being lost at a power failure:

• SETPFSVAR - Register variable to be saved at power off.

• GETPFSVAR - Recover saved variable.

• LISTPFSVAR - List saved variables.

• DELETEPFSVAR - Delete a saved variable.

The temporary memory is used for the following purposes:

• To execute Fingerprint instructions. At startup, the kernel in the permanent
memory is copied to the temporary memory, where all Fingerprint instructions
are executed and the print image bitmaps are created.

• For print image buffers. The current image buffer can be saved as a file using the
IMAGE BUFFER SAVE statement. The file will automatically converted to an
image, that can be used in new label layouts like a preprint or template.

• For the font cache.

• For the Receive/Transmit buffers. Each serial communication channel must
have one buffer of each kind. The size of each buffer is decided separately by the
printer.

• For communication buffers. In a program, you may set up one communication
buffer for each communication channel. This makes it possible to receive data
simultaneously from several sources to be fetched at the appropriate moment
during the execution of the program.

• To store data that does not need to be saved after power-off.

• To temporarily store data before it is copied to the permanent memory or to a
memory card. Because the permanent flash memory has to reorganize itself
occasionally, is becomes comparatively slow. Thus, it is more efficient to first
create files in the temporary memory and then save them to the permanent
memory. When speed is important, avoid using the permanent memory to save
data that will be of no use after power off.

Other Memory Devices
The “storage:” device is a memory device that is used for special applications and
should not be used for normal Fingerprint programming.

Note: There are no fixed partitions in the temporary memory. After the firmware has
been copied to it and the Receive/Transmit buffers have been set, the remaining
memory will be shared between the various tasks.

Chapter 7 — Controlling the Printer

Fingerprint Developer’s Guide 121

Changing the Current Directory
“Current directory” is the directory which Fingerprint uses unless you specify
another directory. By default, the current directory is set to “/c”.

Use a CHDIR statement to change the current directory. To return the current
directory, use the CURDIR$ function.

The next example shows how to change the current directory from the default (“/c”)
to “tmp:” and then back to “/c”.

10 CHDIR “tmp:”
.....
90 CHDIR “/c”

Checking Free Memory
You can check the size of the memory in the current directory and see how much
free space there is by issuing a FILES statement in Immediate Mode.

Another way is to use the FRE function in a small instruction that returns the
number of free bytes in a specified part of the printer memory.

Example:

PRINT FRE(“tmp:”)

Results in (for example)

2382384

Providing More Free Memory
In order to free up memory space in temporary memory, you can use a CLEAR
statement to empty all strings, set all variables to zero, and reset all arrays to their
default values. If even more memory is required, you will have to consider either to
KILL some programs or files, or to use REMOVE IMAGE to delete images stored in
“/c” and or “tmp:”. If the printer is not equipped with the maximum amount of
memory, you have the option to install additional or larger Flash or SDRAM SIMM
packages.

Formatting the Permanent Memory
The printer permanent memory (“/c”) can be formatted either partially or
completely by using the FORMAT command as follows:

FORMAT “/c”,A

The A parameter indicates that you want to erase all files in the device (hard
formatting). However, this does not erase your printer configuration.

FORMAT “/c”

erases all files, except those starting with a period (.) character (soft formatting).
Many Fingerprint system filenames begin with a period character.

Note: Make backup copies on the host before you replace memory units or install
additional memory in the printer.

Chapter 7 — Controlling the Printer

122 Fingerprint Developer’s Guide

Using the Industrial Interface

The optional Serial/Industrial Interface Board includes 8 digital IN ports, 8 digital
OUT ports, and 4 OUT ports with relays.

When used with the optional Serial/Industrial Interface Board, Fingerprint can
control external equipment such as conveyor belts, gates, turnstiles, and control
lamps, in addition to the printer. Conversely, the status of various external devices
can be used to control both the printer and other equipment. Thus, a Fingerprint
program can independently control workstations without an online connection to a
host computer.

There are several Fingerprint commands used in connection with the Serial/
Industrial Interface Board:

• PORTOUT ON/OFF: Sets one of the OUT ports (digital or relay) to either on or
off.

• PORTOUT.DATAREADY ON: Asserts the Dataready signal, which can be used
to control a print applicator.

• PORTIN: This function returns the status of a specified port, or checks the
current state of a specified input or output signal.

123

8
Error Handling

This chapter describes how Fingerprint handles errors and includes these
topics:

• Standard Error Handling

• Checking for Programming Errors

• Commands for Error-Handling Routines

• Using the ERRHAND.PRG Utility Program

• Standard Error Codes

Chapter 8 — Error Handling

124 Fingerprint Developer’s Guide

Standard Error Handling

In most application programs, it is useful to include some kind of error handler. The
complexity of the error handler depends on the application and how independently
the printer works. For flexibility, Intermec Fingerprint includes a number of tools
for designing custom error handling routines.

Fingerprint includes hardware-based error handling, such as reporting “out of
media” errors when the Print or Feed keys are pressed during a print job, or if batch
printing is interrupted by pressing the Print or Pause keys.

Additionally, during program execution, Fingerprint performs these checks:

• Syntax Check. Each program line or instruction received on the standard IN
channel is checked for possible syntax errors before it is accepted. If two-way
communication is established, error messages (for example, “Feature not
implemented” or “Font not found”) are transmitted to the host on the standard
OUT channel.

• Execution Check. Any program or hardware error that stops the execution is
reported on the standard OUT channel. In case of program errors, the number of
the line where the error occurred is also reported (for example, “Field out of label
in line 110”). After the error has been corrected, the execution must be restarted
by means of a new RUN statement, unless the program includes a routine for
dealing with the error condition.

Choosing an Error Message Format
Using the system variable SYSVAR(19), you can choose between four types of error
messages. This is illustrated by the following examples using error #19:

• “Invalid font in line 10” (default)

• “Error 19 in line 10: Invalid font”

• “E19”

• “Error 19 in line 10”

For more information, see the SYSVAR information in the Fingerprint Command
Reference Manual.

Note: For two-way communications, these conditions must be fulfilled:

• Serial communications are established with the host

• Std IN channel = Std OUT channel

• Verbosity is enabled

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 8 — Error Handling

Fingerprint Developer’s Guide 125

Checking for Programming Errors

Use these Fingerprint commands to check for possible programming errors:

• TRON|TROFF - Trace the execution line by line during execution.

• STOP or CONT - Temporarily stop execution, and resume after being stopped.

• DBBREAK - Create a breakpoint.

• DBSTEP - Create a breakpoint after a specified number of lines are executed.

Using a TRON|TROFF Statement
If the program does not work as expected, there may be a programming error that
prevents the program from being executed in the intended order. Use a TRON
(Trace On) statement to trace the execution. When the program is run, each line
number is returned on the standard OUT channel in the order of execution. TROFF
(Trace Off) disables TRON.

Using STOP and CONT Statements
Use a STOP statement to temporarily stop execution when examining or changing
variables. Program execution can be resumed from where it was stopped using a
CONT statement, or from a specified line using a GOTO statement. You cannot use
CONT if the program has been edited during the break.

Specifying Breakpoints
To make it easier to debug a program step by step, you can specify breakpoints in
the program. Use a DBBREAK statement to create or delete a breakpoint.
Alternatively, you can use the DBSTEP statement to specify how many lines should
be executed before next break.

At a break, the message “break in line nnn” is sent on the Debug STDOUT port,
which can be specified by a DBSTDIO statement. You can resume the execution at
next program line using a CONT statement or from the start of the program using a
RUN statement.

• All breakpoints can be deleted by a single DBBREAK OFF statement.

• Using SYSVAR(36) you can choose whether a change of program mode should
be printed to the Debug STDOUT port or not.

• The statement LIST,B lists all breakpoints to the standard OUT channel.

• The statement DBEND terminates the debugger.

Chapter 8 — Error Handling

126 Fingerprint Developer’s Guide

Commands for Error-Handling Routines

This section describes Fingerprint commands you use to create error-handling
routines.

Branching to Subroutines With ON ERROR GOTO...
Use ON ERROR GOTO... to branch execution to a subroutine if any kind of error
occurs when a program is run. The error can be identified and managed, and
program execution can be resumed at an appropriate program line. For more
information, see “Instructions for Conditional Branching” on page 18.

Checking Error Codes with ERR and ERL
ERR returns the reference number of an error that has occurred. For more
information, see the Error Codes topic in the Fingerprint Command Reference
Manual.

ERL returns the number of the line on which an error has occurred.

Resuming Execution After Errors
This statement resumes execution after the error has been handled in a subroutine.
Execution can be resumed at the statement where the error occurred, at the
statement immediately following the one where the error occurred, or at any other
specified line. For more information, see “Instructions for Conditional
Branching” on page 18.

Returning Print Job and Printhead Status with PRSTAT
In addition to returning insertion point and field information, PRSTAT can return
print job and printhead status, including multiple error conditions.

Calling PRSTAT without parameters returns a numeric value. If 0 returns, the
printer is OK. Any other value indicates a print job or printhead error condition, or
some combination of error conditions as shown in the next table.

PRSTAT Error Values

Value Description

0 Printer is OK

1 Printhead lifted

2 Label not removed (valid if Label Taken Sensor is installed, and returns 0 if printer
has no LTS)

4 Label Stop Sensor does not detect a label

8 Printer out of thermal transfer ribbon, or the printer is set for direct thermal
printing, a ribbon is installed

16 Printhead voltage too high

32 Printer is feeding

128 Printer out of media

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 8 — Error Handling

Fingerprint Developer’s Guide 127

Multiple errors are indicated by the sum of the values. For example, if the printhead
is lifted (1), and the printer is out of media (128) and ribbon (8), then PRSTAT
returns 137.

To speed up execution when several conditions are to be checked, assign the
PRSTAT value to a numeric variable. For example:

10 A% = PRSTAT
20 IF A% (AND 1) GOTO 1000
30 IF A% (AND 2) GOTO 2000
...

For more information, see PRSTAT in the Fingerprint Command Reference Manual.

Error Handling Example
In this example one error condition (Error 1019, “Invalid Font”) is managed. The
same principles can be used for more errors. Test the example by either adding a
valid font name or lifting the printhead before running the program.

10 OPEN “console:” FOR OUTPUT AS 1
20 ON ERROR GOTO 1000
30 PRPOS 50,100
40 PRTXT “HELLO”
50 PRINTFEED
60 A%=TICKS+400
70 B%=TICKS
80 IF B%<A% THEN GOTO 70 ELSE GOTO 90
90 PRINT #1 : PRINT #1
100 END
1000 SOUND 880,50
1010 EFLAG%=ERR : ELINE%=ERL
1020 IF EFLAG%=1019 THEN GOTO 2000 ELSE GOTO 3000
2000 PRINT #1 : PRINT #1
2010 PRINT #1, “Font missing”
2020 PRINT #1, “in line ”, ELINE%;
2030 FONT “Univers”,24 : INVIMAGE
2040 RESUME
3000 PRINT #1 : PRINT #1
3010 PRINT #1, “Undefined error”
3020 PRINT #1, “Program Stops!”;
3030 RESUME NEXT
RUN

Using the ERRHAND.PRG Utility Program

For simple error handling, Fingerprint includes ERRHAND.PRG. This utility
program contains basic routines for handling errors, managing the keyboard and
display, and printing. Merge ERRHAND.PRG with your program to use ERRHAND
subroutines for error handling.

The approximate size of ERRHAND.PRG is 4 KB. To use ERRHAND.PRG with
more than one application stored in printer memory, you can save valuable memory
space by merging ERRHAND.PRG with the current program directly after loading.

Note: Do not use the lines 10-20 and 100,000-1,900,200 in your program, since
those line numbers are used by ERRHAND.PRG.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Chapter 8 — Error Handling

128 Fingerprint Developer’s Guide

To merge ERRHAND.PRG with your program, your code should look like this:

NEW
LOAD “MY PROGRAM.PRG”
MERGE “/rom/ERRHAND.PRG”
RUN

Modifying ERRHAND Variables and Subroutines
There are two sets of variables in ERRHAND.PRG that you can use or modify:

• NORDIS1$ and NORDIS2$ at line 10 contain the main display texts. You can
replace them with your own text.

• DISP1$ and DISP2$ contain the actual text that appears in the printer display
on lines 1 and 2 respectively.

The next table lists subroutines you can use or modify.

For more information, see the next section.

ERRHAND.PRG Subroutines

At Line Description

160000 Errors which normally may occur during printing are handled:

• Error 1005: Out of paper

• Error 1006: No field to print

• Error 1022: Head lifted

• Error 1027: Out of transfer ribbon

• Error 1031: Next label not found

The subroutine shows the last error that occurred, if any, and the line
number where the error was detected. The information is directed to your
terminal. Called by the statement GOSUB 160000.

200000 Includes error-handling routines that can be called from routines where
errors may occur. See lines 200000 through 200080.

400000 The FEED-routine executes a FORMFEED with error-checking. Called by
the statement GOSUB 400000.

500000 The PRINT-routine executes a PRINTFEED with error-checking. Called
by the statement GOSUB 500000.

600000 Clears the printer display and makes the display texts stored in the
variables DISP1$ and DISP2$ appear on the first and second line in the
display. Called by the statement GOSUB 600000.

700000 The Init routine initiates error-checking, opens the console for output,
and displays the main display texts (NORDIS1$ and NORDIS2$). It also
sets up the some of the keys on the keyboard (if any) and assigns
subroutines to each key. Called by the statement GOSUB 700000.

1500000 Pause key (key No. 15) interrupts the program until pressed a second
time. Called by the statement GOSUB 1500000.

1700000 Routine for Print key (key No. 17) that calls subroutine 500000. Called
by the statement GOSUB 1700000.

1800000 Routine for Setup key (key No. 18). Places the printer in Setup Mode.
Called by the statement GOSUB 1800000.

1900000 Routine for Feed key (key No. 19), that calls subroutine 400000. Called
by the statement GOSUB 1900000.

Chapter 8 — Error Handling

Fingerprint Developer’s Guide 129

Complete Listing of ERRHAND.PRG
10 PROGNO$=“Ver. 1.21 2005-11-25”
15 NORDIS1$=“FP-APPLICATION” : NORDIS2$= “VERSION 1.21”
20 GOSUB 700000 : 'Initiate
100000 'Error routine
100010 EFLAG%=ERR
100050 'PRINT EFLAG%:'Activate for debug
100060 LASTERROR%=EFLAG%
100200 RESUME NEXT
160000 'PRINT “Last error = ”;LASTERROR%:'Activate for debug
160050 'IF LASTERROR%<>0 THEN PRINT “At line ”;ERL
160100 LASTERROR%=0
160200 RETURN
200000 'Error handling routine
200010 IF EFLAG%=1006 THEN GOTO 200040 : ' Formfeed instead of print
200020 LED 1 ON : LED 0 OFF : BUSY
200030 SOUND 400,10
200040 IF EFLAG%=1031 THEN GOSUB 300000
200050 IF EFLAG%=1005 THEN GOSUB 310000
200060 IF EFLAG%=1006 THEN GOSUB 320000
200070 IF EFLAG%=1022 THEN GOSUB 330000
200080 IF EFLAG%=1027 THEN GOSUB 340000
200090 DISP1$=NORDIS1$: DISP2$=NORDIS2$
200100 GOSUB 600000
200110 LED 1 OFF : LED 0 ON : READY
200400 RETURN
300000 'Error 1031 Next label not found
300010 DISP1$=“LABEL NOT FOUND”
300020 DISP2$=“ERR NO. ”+STR$(ERR)
300030 GOSUB 600000
300040 EFLAG%=0
300050 FORMFEED
300060 IF EFLAG%=1031 THEN GOTO 300040
300200 RETURN
310000 'Error 1005 Out of paper
310010 DISP1$=“OUT OF PAPER”
310020 DISP2$=“ERR NO. ”+STR$(ERR)
310030 GOSUB 600000
310040 IF (PRSTAT AND 1)=0 THEN GOTO 310040 : ' Wait until head lifted
310050 EFLAG%=0
310060 IF (PRSTAT AND 1)=0 THEN FORMFEED ELSE GOTO
310060
310070 IF EFLAG%=1005 THEN GOTO 310040
310080 IF EFLAG%=1031 THEN GOSUB 300000
310200 RETURN
320000 'Error 1006 no field to print
320010 GOSUB 400000
320200 RETURN
330000 'Error 1022 Head lifted
330010 DISP1$=“HEAD LIFTED”
330020 DISP2$=“ERR NO. ”+STR$(ERR)
330030 GOSUB 600000
330040 IF PRSTAT AND 1 THEN GOTO 330040
330050 FORMFEED
330060 IF PCOMMAND% THEN GOSUB 500000
330200 RETURN
340000 'Error 1027 Out of transfer ribbon

Chapter 8 — Error Handling

130 Fingerprint Developer’s Guide

340010 DISP1$=“OUT OF RIBBON”
340020 DISP2$=“ERR NO. ”+STR$(ERR)
340030 GOSUB 600000
340040 IF PRSTAT AND 8 THEN GOTO 340040
340050 'GOSUB 1500000
340051 GOSUB 1501000
340200 IF PCOMMAND% THEN GOSUB 500000
349000 RETURN
400000 'Feed routine
400010 EFLAG%=0
400020 FORMFEED
400200 IF EFLAG%<>0 THEN GOSUB 200000
400300 RETURN
500000 'Print routine
500010 EFLAG%=0
500020 PCOMMAND%=1
500030 PRINTFEED
500040 IF EFLAG%<>0 THEN GOSUB 200000
500100 PCOMMAND%=0
500300 RETURN
600000 'Display handler
600010 PRINT #10
600020 PRINT #10
600030 PRINT #10, DISP1$
600040 PRINT #10, DISP2$;
600200 RETURN
700000 'Init routine
700010 ON ERROR GOTO 100000
700020 OPEN “console:” FOR OUTPUT AS 10
700030 DISP1$=NORDIS1$: DISP2$=NORDIS2$
700040 GOSUB 600000
700100 ON KEY 15 GOSUB 1500000 : 'PAUSE
700110 ON KEY 17 GOSUB 1700000 : 'PRINT
700120 ON KEY 18 GOSUB 1800000 : 'SETUP
700130 ON KEY 19 GOSUB 1900000 : 'FEED
700140 KEY 15 ON
700150 KEY 17 ON
700160 KEY 18 ON
700170 KEY 19 ON
700230 LED 0 ON
700240 LED 1 OFF
700300 PAUSE%=0
700500 RETURN
1500000 'Pause function
1500010 KEY 15 ON
1500020 PAUSE%=PAUSE% XOR 1
1500030 BUSY : LED 0 OFF
1500040 DISP1$=“Press <PAUSE>” : DISP2$=“to continue”
1500050 GOSUB 600000
1500060 IF PAUSE%=0 THEN GOTO 1500100
1500070 SOUND 131,2
1500080 SOUND 30000,20
1500090 IF PAUSE% THEN GOTO 1500070
1500100 READY : LED 0 ON
1500110 DISP1$=NORDIS1$: DISP2$=NORDIS2$
1500120 GOSUB 600000
1501000 'PD41 Pause function
1501005 ON KEY 17 GOSUB 1501000 : 'Temporarily hijack the PRINT key.
1501010 KEY 17 ON

Chapter 8 — Error Handling

Fingerprint Developer’s Guide 131

1501020 PAUSE%=PAUSE% XOR 1
1501030 BUSY : LED 0 OFF
1501040 DISP1$=“Press <PRINT>” : DISP2$=“to continue”
1501050 GOSUB 600000
1501060 IF PAUSE%=0 THEN GOTO 1501100
1501070 SOUND 131,2
1501080 SOUND 30000,20
1501090 IF PAUSE% THEN GOTO 1501070
1501100 READY : LED 0 ON
1501110 DISP1$=NORDIS1$: DISP2$=NORDIS2$
1501120 GOSUB 600000
1501130 ON KEY 17 GOSUB 1700000
1502000 RETURN
1503000 RETURN
1700000 'Printkey
1700010 KEY 17 OFF
1700020 GOSUB 500000
1700030 KEY 17 ON
1700200 RETURN
1800000 'Setup key
1800010 KEY 18 OFF
1800020 LED 0 OFF
1800030 BUSY
1800040 SETUP
1800050 READY
1800060 LED 0 ON
1800080 KEY 18 ON
1800090 DISP1$=NORDIS1$: DISP2$=NORDIS2$
1800100 GOSUB 600000
1800200 RETURN
1900000 'Feedkey
1900010 KEY 19 OFF
1900020 GOSUB 400000
1900030 KEY 19 ON
1900200 RETURN

Extensions to ERRHAND.PRG
The following subroutines can be added manually to stop new input via the printer
keyboard while a subroutine is executed.

To enable all keys after completing a subroutine:

800000 'Turn all keys on
800010 FOR I% = 0 TO 21
800020 KEY (I%) ON
800030 NEXT I%
800040 RETURN

To disable all keys before entering a subroutine:

900000 'Turn all keys off
900010 FOR I% = 0 TO 21
900020 KEY (I%) OFF
900030 NEXT I%
900040 RETURN

Chapter 8 — Error Handling

132 Fingerprint Developer’s Guide

Standard Error Codes

When a problem occurs, your printer may display an error code. For a list of
standard error codes and the explanations for the error, see the Fingerprint
Command Reference Manual.

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

133

A
Character Sets and Keywords

This chapter includes an introduction to character sets and a list of
Fingerprint keywords reserved for use by commands.

Appendix A — Character Sets and Keywords

134 Fingerprint Developer’s Guide

Introduction to Character Sets

The following information applies to all single-byte character sets:

• Characters between ASCII 00 decimal and ASCII 31 decimal are unprintable
control characters as listed below.

• Characters between ASCII 32 decimal and ASCII 127 decimal can always be
printed, regardless of 7-bit or 8-bit communication protocol, provided that the
selected font contains those characters.

• Characters between ASCII 128 decimal and ASCII 255 decimal can only be
printed if the selected font contains those characters and an 8-bit
communication protocol is used. If you use 7-bit communication, select another
national character set with the NASC command, or use a MAP statement to
remap a character set.

• If a character which does not exist in the selected font is used, an error condition
occurs.

For the full list of character sets supported by Fingerprint, see the Fingerprint
Command Reference Manual.

Non-Printable Control Characters (ASCII 00-31 dec)

ASCII Character Meaning ASCII Character Meaning

00 NUL Null 16 DLE Data link escape

01 SOH Start of heading 17 DC1 Device control one

02 STX Start of text 18 DC2 Device control two

03 ETX End of text 19 DC3 Device control three

04 EOT End of transmission 20 DC4 Device control four

05 ENQ Enquiry 21 NAK Negative acknowledge

06 ACK Acknowledge 22 SYN Synchronous idle

07 BEL Bell 23 ETB End of transmission block

08 BS Backspace 24 CAN Cancel

09 HT Horizontal tabulation 25 EM End of medium

10 LF Line feed 26 SUB Substitute

11 VT Vertical tabulation 27 ESC Escape

12 FF Form feed 28 FS File separator

13 CR Carriage return 29 GS Group separator

14 SO Shift out 30 RS Record separator

15 SI Shift in 31 US Unit separator

http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip
http://epsfiles.intermec.com/eps_files/eps_man/937-005-005.zip

Appendix A — Character Sets and Keywords

Fingerprint Developer’s Guide 135

About the UTF-8 Character Set

The UTF-8 character set was created to encode all Unicode characters while
maintaining compatibility with the US-ASCII (0 to 127 dec.) range of characters.
Data is encoded with 1, 2, 3 or 4 bytes, depending on the character number range.
The table below shows the UTF-8 binary sequences corresponding to the Unicode
character number.

Follow the next procedure to convert a Unicode character code in hex format to the
UTF-8 byte decimal value necessary to print the characters.

To convert a hex format Unicode character code to a decimal value

1 Determine the Unicode hex value for the character. For example, the hex value
for the Cyrillic capital letter ZHE () is 0416.

2 Based on the hex value, determine the number of bytes required for UTF-8
encoding:

Using the same example, a hex value of 0416 requires two bytes for UTF-8
encoding.

3 Convert the hex value to binary. Using the same example, a hex value of 0416
equals the binary value 10000010110.

4 Identify x, y, and z bits as applicable. Start with the least significant digits to the
right and pad with zeros to the left if necessary.

In this example, the first five digits of the binary value 10000010110 correspond
to the y bits, and the remaining six digits correspond to the x bits. No padding
zeros are necessary.

The first byte is 11010000.

The second byte is 10010110.

Unicode character number range UTF-8 Byte sequence

Hex Binary Binary

0000-007F x7x6x5x4x3x2x1 One byte:
0x7x6x5x4x3x2x1

0080-07FF y5y4y3y2y1x6x5x4x3x2x1 Two bytes:
110y5y4y3y2y1 10x6x5x4x3x2x1

0800-FFFF z4z3z2z1y6y5y4y3y2y1x6x5x4x3x2x1 Three bytes:
1110z4z3z2z1 10y6y5y4y3y2y110 x6x5x4x3x2x1

010000-10FFFF Four bytes: Not currently supported.

Hex value of character Number of bytes required

0000 to 007F One

0080 to 07FF Two

0800 to FFFF Three

Appendix A — Character Sets and Keywords

136 Fingerprint Developer’s Guide

5 Convert the bytes to decimal format. Using this example, the byte value
11010000 equals a decimal value of 208, and the byte value 10010110 equals a
decimal value of 150.

Now that you have determined the decimal value for the Unicode character, you can
use the values in a print command:

prtxt chr$(208)+chr$(150)

When selecting UTF-8 with the NASC command, the font must be selected with the
FONT command. Disable UTF-8 encoding by choosing a different character set
with the NASC command.

When using UTF-8, it is important that the font contains the desired characters. The
default font, Univers, contains the largest number of glyphs of the pre-installed
fonts. Unicode character numbers can be found at the web site of the Unicode
organization (www.unicode.org). It is not recommended to have UTF-8 enabled
when printing bar codes since bar code data will use the UTF-8 byte sequence as
input, while the human readable uses the UTF-8 mapped character number.

Example
This example prints the Hiragana Letter Small A character (Unicode hex 3041),
corresponding to the UTF-8 sequence 227 dec. + 129 dec. + 129 dec., in the Song
font. This is followed by the Cyrillic Capital Letter ZHE (Unicode hex 0416) in the
Univers font.

10 NASC “UTF-8”
20 FONT “Song”
30 PRTXT CHR$(227)+CHR$(129)+CHR$(129)
40 PRTXT “ = Hiragana Letter Small A”
50 PRPOS 0,35
60 FONT “Univers”
70 PRTXT CHR$(208)+CHR$(150)
80 PRTXT “ = Cyrillic Capital Letter ZHE”
90 PRINTFEED

Note: FONT and FONTD commands are reset to their defaults after a PRINTFEED
(or CLL) command. NASC and NASCD commands are not reset to default after a
PRINTFEED (or CLL) command.

Appendix A — Character Sets and Keywords

Fingerprint Developer’s Guide 137

Reserved Keywords and Symbols

This list includes keywords and symbols reserved for use by Fingerprint commands.
Do not create variable or line label names that start with these keywords or errors
will result.

List of Reserved Keywords

#

'

(

)

*

+

,

-

/

\

:

;

<

<=

<>

=

=<

=>

>

><

>=

?

“

^

ABS

ACTLEN

ALIGN

AN

AND

AS

ASC

BARADJUST

BARCODENAME$

BARFONT

BARFONTD

BARFONTDSIZE

BARFONTDSLANT

BARFONTSIZE

BARFONTSLANT

BARHEIGHT

BARMAG

BARRATIO

BARSET

BARTYPE

BEEP

BF

BH

BLINK

BM

BR

BREAK

BT

BUFFER

BUSY

CHDIR

CHECKSUM

CHR$

CLEANFEED

CLEAR

CLIP

CLL

CLOSE

COM ERROR

COMBUF$

COMSET

COMSTAT

CONT

COPY

COUNT&

CSUM

CURDIR$

CUT

DATA

DATAIN

DATE$

DATEADD$

DATEDIFF

DBBREAK

DBEND

DBSTDIO

DBSTEP

DELETE

DELETEPFSVAR

DEVICES

DIM

DIR

DIRNAME$

ELSE

END

EOF

ERL

ERR

ERR$

ERROR

ETUPLE

EXECUTE

FF

FIELD

FIELDNO

FILE&

FILENAME$

FILES

FIX

FLOTCALC$

FONT

FONTD

FONTDSIZE

FONTDSLANT

FONTNAME$

FONTS

FONTSIZE

FONTSLANT

FOR

FOR APPEND AS

FOR INPUT AS

FOR OUTPUT AS

FORMAT

FORMAT$

FORMFEED

FRE

FT

FUNCTEST

FUNCTEST$

GET

GETASSOC$

GETASSOCNAME$

GETPFSVAR

GOSUB

GOTO

HEAD

HEX$

HOLIDAY$

IF

II

IMAGE

IMAGENAME$

IMAGES

IMMEDIATE

INKEY$

INPUT

INPUT$

INSTR

INT

INVIMAGE

IP

KEY

KEYBMAP$

KILL

LAYOUT

LBLCOND

LED

LEFT$

LEN

LET

LINE INPUT

LIST

LISTPFSVAR

LOAD

LOC

LOF

LSET

LTS&

MAG

MAKEASSOC

MAP

MERGE

MID$

MKDIR

MOD

MODE

NAME

NASC

NASCD

NEW

NEXT

NI

NORIMAGE

NOT

OFF

OFF LINE

ON

ON BREAK

ON COMSET

ON ERROR GOTO

ON HTTP GOTO

ON KEY

ON LINE

OPEN

OPTIMIZE

OR

PB

PEC2DATA

PEC2LAY

PECTAB

PF

Appendix A — Character Sets and Keywords

138 Fingerprint Developer’s Guide

List of Reserved Keywords (continued)

PRINT USING

PRINTFEED

PRINTONE

PRLINE

PRPOS

PRSTAT

PRTXT

PT

PUT

PX

RANDOM

RANDOMIZE

READ

READY

REBOOT

REDIRECT OUT

REM

REMOVE

RENDER

RENUM

RESTORE

RESUME

RESUME HTTP

RESUME NEXT

RETURN

RIBBON

RIGHT$

RND

RSET

RUN

SAVE

SET FAULTY DOT

SETASSOC

SETPFSVAR

SETSTDIO

SETUP

SGN

SORT

SOUND

SPACE$

SPLIT

STDIO

STEP

STOP

STORE

STR$

STRING$

SYSTEM

SYSVAR

TESTFEED

THEN

TICKS

TIME$

TIMEADD$

TIMEDIFF

TO

TRANSFER

TRANSFER$

TRANSFERSET

TROFF

TRON

VAL

VERBOFF

VERBON

VERSION$

WEEKDAY

WEEKDAY$

WEEKNUMBER

WEND

WHILE

WRITE

XOR

XORMODE

XYZZY

I

Index
139

Index
Symbols

.PFR, described, 66
/c: as device, described, 11
/rom: as device, described, 11

A

ABS, 42
ACTLEN, 103
adding a copy of a file to the current

file with MERGE, 34
aliases, for font names, 67
ALIGN

anchor points, 76
default after PRINTFEED, 104
default for bar code fields, 82
default for box fields, 85
default for image fields, 84
default for line fields, 86
default for text fields, 80

anchor points
choosing with ALIGN, 76
fields in bar code labels, 76
illustrated, 76–77

APPEND, 58
arithmetic operators, 9
arrays, working with, 36

dimensions, DIM, 37
sorting, SORT, 37
splitting expressions with

SPLIT, 38
string array checksum calculation

with CSUM, 38
ASC, 42
ASCII values

interrupt character, 26
special keys, 111

audio beeps
BEEP for short signal, 113
defining with KEY BEEP, 110
SOUND for custom signal, 113

AUTOEXEC.BAT files, described, 29
auto-starting programs at boot

time, 29

B

bar code extended field record, for
layouts, illustrated, 89

bar code fields, 81
bar code, specifying, 81
command summary, 82
human-readable font,

specifying, 82
input data, 82

bar code interpretation record, for
layouts, illustrated, 90

bar code labels
additional commands, 86

anchor points, 76
bar code fields, 81
box fields, 85
dots, 76
example, 95
fields, checking size and

position, 79
fields, positioning, 75
image fields, 83
insertion point, 76

current position of, 78
inverting intersection printing, 86
layouts, described, 74
line fields, 85
partial fields, printing, 86
print directions, 78
Print key, using, 100
printing commands, 104
rendering, 79
text fields, 79
units, 76

bar code record, for layouts,
illustrated, 89

bar codes, 67
commands, 69
labels, designing, 74
printing, rules for, 69
rules for printing, 69
specifying for bar code fields, 81
supported, 67

baradjust record, for layouts,
illustrated, 90

BARADJUST, to avoid faulty dots, 69,
105

BARCODENAME$, for listing bar
code fonts, 69

BARFONT
choosing fonts, 66
default after PRINTFEED, 104
human-readable font, for bar code

fields, 82
BARFONT ON|OFF

default after PRINTFEED, 104
human-readable font for bar code,

enabling, 69
BARHEIGHT

bar code height, 70
default after PRINTFEED, 104

BARMAG
default after PRINTFEED, 104
magnifying bar code, 70

BARRATIO
default after PRINTFEED, 104
wide and narrow bar ratio,

setting, 70
140 Fingerprint Developer’s Guide

Index
BARSET
bar code, choosing, 70

for bar code field, 81
default after PRINTFEED, 104

BARTYPE
bar code type, choosing, 70
default after PRINTFEED, 104

batch printing, 107
FIELDNO, 107
interrupting, 109
OPTIMIZE "BATCH" ON, 108

BEEP, 113
beeper, controlling, 112
binary files, transferring, 35
borders, for text fields, 80
box fields, 85

command summary, 85
box record, for layouts, illustrated, 90
branching, 17

conditional, 18
GOTO, 20
to error-handling subroutine, 21
to specific line on error, 21
to subroutines, 17
unconditional, 20

BREAK, 26
BREAK...OFF, 27
BREAK...ON, 27
buffer status, returning with LOC or

LOF, 54
BUSY|READY, 50

C

card1: as device, described, 11
Centronics communication,

controlling, 51
centronics: as device, described, 11
character sets

described, 134
modifying with MAP, 40
single-byte, choosing with NASC, 41

CHDIR, 121
CHECKSUM, 36
CHESS2X2.1, 70
CHESS4X4.1, 70
CHR$, 42
CLEANFEED

described, 103
Immediate Mode, 111

cleaning platen roller with
CLEANFEED, 103

CLIP ON|OFF, for partial printing, 86
CLL, to clear print buffer, 108
CLOSE

random files, 62
sequential files, 59

COM ERROR ON|OFF, 52

COMBUF$, 52
commands, sending to printer, 3
comments, adding to code, 15
communication

background, commands for
managing, 51

branching to subroutine on
interruption, 19

buffer status for background
communication, 54

commands for managing, 50
RS-422, 55
turning channels on or off with

BUSY|READY, 50
communication channels

Centronics, controlling signal, 51
host, input from, 44
output to, 62
sequential files, input from, 45
standard IN, 44
standard OUT, 44
turning on and off, 50

COMSET, 51
COMSET OFF, 52
COMSET ON, 51
COMSTAT, 52
conditional branching, 18

IF...THEN GOTO...ELSE, 18
ON BREAK...GOSUB, 19
ON COMSET...GOSUB, 19
ON KEY...GOSUB, 20
ON...GOSUB, 18
ON...GOTO, 18

conditional instructions, 16
IF...THEN...[ELSE], 16
IF...THEN...[ELSE]...END IF, 16

console: as device, described, 11
constants, defined, 8
CONT, in debugging, 125
controlling external equipment, 122
COPY, 33
copying a program file with LOAD, 34
copying programs with COPY, 29
counter, specifying, 22
creating directories in printer

memory, 32
CSUM, 38
CURDIR$

defined, 121
returning the current directory, 32

current directory, 121
CUT ON, 104

D

data blocks, counting with LOC, 47
data file, for layouts, 92
Fingerprint Developer’s Guide 141

Index
data files, commands for
managing, 34

date and time, setting, 113
DATE$, 113
DBBREAK, in debugging, 125
DBSTEP, in debugging, 125
debugging

breakpoints, setting, 125
error handling, 124
error-handling routines, 126
Fingerprint programs, 125

DELETE, to remove program
lines, 16

DELETEPFSVAR, 120
deleting a file with KILL, 34
deleting program lines, 16
devices, described, 11
DIAMONDS.1, 70
DIM, 37
DIR

choosing print direction for
fonts, 66

default after PRINTFEED, 104
default for bar code fields, 82
default for box fields, 85
default for image fields, 84
default for line fields, 86
default for text fields, 80
print direction, setting, 78

directories, 32
commands used with, 32
current, 121
path shortcuts, 32

DIRNAME$, to return directory
names, 32

DISPLAY IMAGE, for PD42 custom
graphics, 112

DISPLAY KEY, for PD42 custom
pictographs, 112

DISPLAY STATE, for PD42 display
icons, 112

display, using, 112
customizing for PD42, 112

dots
described, 76
faulty, finding with SET FAULTY

DOT, 105
double-byte fonts, described, 66
downloading Intel hex files, 71

E

END, to finish a program, 15
EOF, verifying end of file with, 47
ERRHAND.PRG, 127

described, 99
listed, 129
subroutines, 128

variables, 128
error codes, list of, 132
error handling, 124

error codes, checking with
ERR, 126

resuming execution, 126
status, returning with

PRSTAT, 126
subroutines with ON ERROR

GOTO, 126
error-handling routines,

creating, 126
error-handling subroutines

branching to, 21
ON ERROR GOTO, 21
RESUME, 21
resuming execution, 21

errors
branching to specified line on

error, 21
breakpoints, setting, 125
ERRHAND.PRG, 99
error codes, list of, 132
error handling, 124
error-handling routines,

creating, 126
message format, 124
programming errors, checking

for, 125
EXECUTE, to start a program, 25
executing a program with RUN, 34
execution, breaking, 26

BREAK, 26
BREAK...OFF, 27
BREAK...ON, 27
ON BREAK...GOSUB, 27
specifying printer action on

break, 27
expressions, defined, 9

F

faulty dots, defined, 105
Feed key

handling errors, 124
Immediate Mode, 111

FIELD
creating buffer with, 48
random files, creating buffer in, 60

FIELDNO, to clear print buffer, 108
fields, in bar code labels, 75
FILE& LOAD, to download fonts to

printer, 67
FILELIST, to list files line-by-line, 33
FILENAME$, 33
files, 33

binary files, transferring, 35
142 Fingerprint Developer’s Guide

Index
checking data transfer with
CHECKSUM, 36

checking with TRANSFER
STATUS, 35

commands for listing, 33
data files, described, 34
determining length with LOF, 47
executing data transfer with

TRANSFER$, 34
program files, described, 34
text files, transferring, 35
transferring between printers, 36
transferring data between files with

TRANSFERSET, 34
transferring with TRANSFER

KERMIT, 35
transferring with ZMODEM, 35
types, described, 33

FILES, to list files in the current
directory, 33

Fingerprint
command structure, described, 2
commands, sending to printer, 3
constants, 8
described, 2
devices, described, 11
expressions, 9
firmware, where to get, 2
functions, 7
keywords, 6
lines, 6
operating modes, 3
sending programs to printer, 14
statements, 6
syntax, described, 6
variables, 8

finisher: as device, described, 11
firmware version of printer,

checking, 118
FLOATCALC$, 42
FONT

choosing fonts, 66
default after PRINTFEED, 104
default for text fields, 80
font, specifying for text field, 79

font aliases, 67
FONTD

default for text fields, 80
font, double-byte, specifying for text

field, 79
FONTNAME$, to list bar code

fonts, 66
fonts, 66

adding and removing, 67
aliases, creating, 67

choosing, 66
double-byte, described, 66
listing, 66
print direction, 66
rotating, 66
single-byte, described, 66
size, 66
slant, 66
TrueType, described, 66
width, 66

FONTS, to list fonts, 66
FOR...NEXT, 22
FORMAT

permanent memory,
formatting, 121

FORMAT DATE$, 113
FORMAT TIME$, 113
FORMAT$, 42
formatting memory with

FORMAT, 121
FORMFEED

described, 103
Immediate Mode, 111

FRE, checking free memory with, 121
free memory, checking with FRE, 121
FUNCTEST, 106
FUNCTEST$, 106
functions, defined, 7

G

GET, copying fields from a file with, 48
GETPFSVAR, 120
GLOBE.1, 70
GOTO, 20

H

hardware version of printer,
checking, 118

human-readable font, for bar code
fields, 82

HyperTerminal, connecting to
printer, 3

I

id. numbers, for keypad, 109
IF...THEN GOTO...ELSE, 18
IF...THEN..., 16
IF...THEN...ELSE...END IF, 16
IMAGE BUFFER, saving image to

file, 70
image fields, 83

command summary, 84
images, specifying by filename, 83
inverting print, 83
magnifying images, 83

image files, 70
downloading, 71
removing, 72
Fingerprint Developer’s Guide 143

Index
IMAGE LOAD
downloading .pcx files, 71
downloading fonts to printer, 67

IMAGENAME$, listing images to
program, 71

images, 70
listing, 71
removing, 72
specifying for image fields, 83
standard, 70

IMAGES, to list images, 71
Immediate Mode, 12

checking status, 118
commands, sending, 12
keypad, using, 111

IMMEDIATE OFF, to enter
Programming Mode, 15

IMMEDIATE ON, to exit
Programming Mode, 15

industrial interface, 122
input data

character sets, modifying, 40
converting, 42
described, 40
for bar code fields, 82
modifying character sets with

MAP, 40
single-byte character sets,

choosing, 41
INPUT#, 45

entering ASCII characters from
keypad, 110

printer keypad input, 49
INPUT$, 46

entering ASCII characters from
keypad, 110

printer keypad input, 49
insertion point

current position, 78
for fields in bar code labels, 76

INSTR, 42
instructions, conditional, 16
interrupt character, specifying, 26
interrupting batch printing, 109
intersection printing, inverting, 86
inverting print colors, 79
INVIMAGE

default after PRINTFEED, 104
default for text fields, 80
white-on-black print in image

fields, 83
white-on-black print in text

fields, 79

K

KEY BEEP, 110

KEY...ON, for subroutines, 109
KEYBMAP$, to remap keypad, 110
keypad

ASCII values for special keys, 111
audio beeps, defining, 110
branching to subroutines, 109
branching to subroutines on

keypress, 20
entering ASCII characters, 110
id. numbers, 109
Immediate Mode, 111
input data from, 49
printing from Print key, 105
remapping with KEYBMAP$, 110
special keys in Immediate

Mode, 111
keypad, using, 109
keywords

defined, 6
reserved, list of, 137

KILL, 34
images, deleting from devices, 72

L

label taken sensor, enabling with
LTS& ON, 104

LAYOUT, 87
font aliases, creating, 67

layouts, 87
array, 92
data file, 92
error file, 92
field records, illustrated, 89, 90
logotype name file, 91
requirements, 88
using files in LAYOUT

command, 93
LBLCOND, 103
LED BLINK, 112
LED OFF, 112
LED ON, 112
LEDs, controlling, 112
LEFT$, 42
LEN, 42
line fields, 85

command summary, 86
LINE INPUT#, 46

entering ASCII characters from
keypad, 110

printer keypad input, 49
line numbers

automatically adding, 15
renumbering, 16
using, 13

line record, for layouts, illustrated, 90
LIST, 15
144 Fingerprint Developer’s Guide

Index
listing
contents of a file with LIST, 34
files in different parts of memory, 33
files in read/write memory, 33
files line-by-line, 33
programs, 15

LISTPFSVAR, 120
LOC, 52

counting data blocks with, 47
finding last field read, 49
random files, 62
returning buffer status, 54
sequential files, 59

LOF, 52
determining file length, 47, 49
random files, 62
returning buffer status, 54
sequential files, 59

logical operators, 10
logotype record, for layouts

by number, illustrated, 90
described, 91
illustrated, 89

loops, 22
FOR...NEXT, 22
nesting, 22
using a counter, 22
WHILE...WEND, 23

LSET, random file buffer, 61
LTS& ON, 104

M

MAG
default after PRINTFEED, 104
default for image fields, 84
image fields, magnifying, 83

magnifying images in image fields, 83
MAP, modifying character sets with, 40
media feed

adjusting distance with
TESTFEED, 102

checking distance with
ACTLEN, 103

cleaning platen roller with
CLEANFEED, 103

controlling, 102
feeding out one label, 103
start- and stopadjust values,

overriding with
LBLCOND, 103

memory, 119
checking free memory, 121
clearing, 15
current directory, changing, 121
formatting, 121

suggestions for managing, 121
temporary, 120

merging files, 99
message format for errors, 124
MID$, 42
MKAUTO.PRG file, described, 29
MKDIR, to create a new directory, 32
multi-line text fields, 79

N

NAME DATE, 113
NAME WEEKDAY$, 113
NASC, choosing single-byte character

sets with, 41
net1: as device, described, 11
NEW, to clear printer memory, 15
NORIMAGE

black-on-white print in image
fields, 83

black-on-white print in text
fields, 79

default for text fields, 80
numbering lines, described, 13

O

OFF LINE, 51
ON BREAK...GOSUB, 19
ON COMSET...GOSUB

conditional branching, 19
described, 51

ON ERROR GOTO, 21
ON KEY...GOSUB, 20

for subroutines, 109
ON LINE, 51
ON...GOSUB, 18
ON...GOTO, 18
OPEN, 58

random files, 60
operators, described, 9
OPTIMIZE "BATCH" ON|OFF, 107,

108
origin, for printhead, described, 75
output

ASCII values, printing by, 57
printer display, 63
printing expressions, 56
random files, 60
redirecting data with REDIRECT

OUT, 34
redirecting to file, 58
sequential files, 58
standard OUT channel, 56
to communication channels, 62

OUTPUT, to setup file, 115

P

paper cutter, enabling with CUT
ON, 104
Fingerprint Developer’s Guide 145

Index
partial fields, printing in bar code
labels, 86

path shortcuts, 32
Pause key in Immediate Mode, 111
PD42 display, customizing, 112
permanent memory, formatting, 121
PORTIN, 122
PORTOUT ON|OFF, 122
PORTOUT.DATAREADY ON, 122
PRBAR

default for bar code fields, 82
input data for bar code, 70
input data, for bar code fields, 82

PRBOX
default for box fields, 85
text field, specifying size of box, 80

PRBUF, downloading images to print
buffer, 70

PRIMAGE, to specify image by
filename, 83

print buffer, clearing, 108
print directions, 78
Print key

handling errors, 124
Immediate Mode, 111

PRINT KEY ON, 105
print window, defined, 86
PRINT, printing lines with, 56
PRINT#, 59
printer

audio beeps, controlling with BEEP
or SOUND, 113

beeper, controlling, 112
connecting with HyperTerminal, 3
controlling programmatically with

Fingerprint, 102
date and time, setting, 113
display, using, 112
firmware version, checking, 118
hardware version, checking, 118
keypad, input data from, 49
LEDs, controlling, 112
media feed commands, 102
memory, described, 119
power failure, saving settings, 120
programs, sending to, 14
real-time clock, 113
rebooting, 119
to clear working memory, 15
using SETUP to control

settings, 115
verbosity, controlling, 51

printer display, output to, 63
PRINTFEED

batch printing, 107
default for bar code fields, 82

default for text fields, 80
default settings, 104
origin, described, 75
repeating last operation, 104
reprinting after interruptions, 107

printhead
checking status with FUNCTEST

or FUNCTEST$, 106
checking with SYSVAR, 105
faulty dots, finding with SET

FAULTY DOT, 105
returning status with

PRSTAT, 126
printing

bar code labels, example, 95
batch, described, 107
characters by ASCII values with

PRINTONE, 57
clearing print buffer with CLL, 108
commands, 104
controlling, 104
from printer keypad, enabling with

PRINT KEY ON, 105
label taken sensor, enabling with

LTS& ON, 104
labels with Print key, 100
paper cutter, enabling with CUT

ON, 104
reprinting labels after

interruptions, 107
using BARADJUST to change print

position, 105
printing lines with PRINT, 56
PRINTONE, for printing characters

by ASCII values, 57
PRINTONE#, 59
PRLINE, default for line fields, 86
Programming Mode, 13

IMMEDIATE OFF, 15
line numbers, using, 13
without line numbers, 14

programs
auto-starting at boot time, 29
bar code labels, example, 95
branching to specific lines, 18
branching to subroutines on

keypress, 20
breaking execution, 26
commands for editing, 15
commands, creating and

managing, 34
copying, 29
deleting lines, 16
errors, checking for, 125
146 Fingerprint Developer’s Guide

Index
example, 25
executing, 25
interrupt execution and branch to

subroutine, 19
listing, 15
merging, 99
naming, 28
protecting, 28
saving, 27
saving without line numbers, 28
structuring, 24

PRPOS
default after PRINTFEED, 104
default for bar code fields, 82
default for box fields, 85
default for image fields, 84
default for line fields, 86
default for text fields, 80
insertion point, setting, 76

PRSTAT
insertion point, checking

position, 78
returning print job status, 126

PRTXT
default for text fields, 80
input data for text field,

specifying, 80
PUP.BAT file, described, 29
PUT, for data transfer to random

files, 61

R

random files, input from
closing file, 49
commands, 48
copying fields, 48
creating buffer, 48
file length, 49
finding last field read, 49

random files, output to, 60
buffer, creating, 60
closing file, 62
data, left- or right-justifying, 61
data, transferring, 61
file length, 62
finding last field read, 62
opening file, 60

random numbers, generating, 43
RANDOM, generating random

numbers, 43
RANDOMIZE, 43
reading data to variable with

INPUT#, 45
reading line to variable with LINE

INPUT#, 46

reading specific data length with
INPUT$, 46

Ready LED, controlling with LED
commands, 112

REBOOT, 119
rebooting printer, 119
REDIRECT OUT, 34
redirecting output data to file, 58
relational operators, 9
REM, to add comments to code, 15
remapping keypad with

KEYBMAP$, 110
REMOVE IMAGE, to remove images

from devices, 72
RENDER ON|OFF, to locate insertion

point, 79
rendering, 79
RENUM, to renumber program

lines, 16
renumbering program lines, 16
reprinting labels after

interruptions, 107
RESUME, 21
returning directory names, 32
returning the current directory, 32
ribbon, checking with SYSVAR, 105
RIGHT$, 42
RS-422 communication, 55
rs485: as device, described, 11
RSET, random file buffer, 61
RUN, to start a program, 25
running a program, 25

S

SAVE, 27
saving a file with SAVE, 34
saving a program, 27
sending programs to printer, 14
sequential files, input from, 45

closing file, 47
data blocks, counting, 47
file length, 47
lines, reading to variable, 46
reading data to variable, 45
specifying file or channel, 46
verifying end of file, 47

sequential files, output to, 58
ASCII values, printing by, 59
closing file, 59
data blocks, counting, 59
expresisons, printing to, 59
file length, 59
opening file, 58

Serial/Industrial Interface Board, 122
SET FAULTY DOT, 105
SETPFSVAR, 120
SETSTDIO, setting communication

channels with, 44
Fingerprint Developer’s Guide 147

Index
setup file, creating, 115
Setup key in Immediate Mode, 111
Setup Mode, using

programmatically, 115
current setup, reading with SETUP

WRITE, 115
saving a setup, 116
setup file, creating, 115
setup strings, described, 116
using setup file, 115

SETUP, to set printer parameters, 115
SGN, 42
single-byte character sets, choosing, 41
single-byte fonts, described, 66
single-line text fields, 79
SORT, 37
SOUND, 113
SPACE$, 42
specifying text for text fields, 80
SPLIT, 38
standard IN channel, 44
standard OUT channel, 44
statements, defined, 6
STDIO status, checking, 118
STOP, in debugging, 125
STORE IMAGE, to download Intel hex

files, 71
STORE INPUT, to download Intel hex

files, 71
STORE OFF, clearing download

parameters for Intel hex files, 71
STR$, 42
STRING$, 42
symbologies. See bar codes
symbols, reserved, list of, 137
SYSVAR

checking image download status, 71
error message formats,

changing, 124
printhead, checking, 105
transfer ribbon, checking, 105
using, 116
values, listed, 116

T

TESTFEED
in Immediate Mode, 111
media feed distance, adjusting, 102

text fields, 79
borders, defining, 80
command summary, 80
font, specifying, 79

inverting print, 79
text, specifying, 80

text files, transferring, 35
text record, for layouts, illustrated, 89
TICKS, 114
time and date, setting, 113
TIME$, 113
tmp: as device, described, 11
TRANSFER KERMIT

described, 35
downloading fonts to printer, 67

transfer ribbon, checking with
SYSVAR, 105

TRANSFER STATUS, 35
TRANSFER ZMODEM, to transfer

fonts to printer, 67
TRANSFER$, 34
transferring files between printers, 36
TRANSFERSET, 34
TRON|TROFF, in debugging, 125
TrueType fonts, described, 66

U

uart1: as device, described, 11
uart2: as device, described, 11
uart3: as device, described, 11
usb1: as device, described, 11
UTF-8 character set, 135

V

VAL$, 42
variables

defined, 8
saving to prevent loss, 120

VERB ON|OFF, 51
verbosity, controlling with VERB

ON, 51
VERSION$, 118

W

waiting loop, described, 20
WEEKNUMBER, 114
WHILE...WEND, 23

X

X-axis, for printing, 75
XORMODE OFF, 86
XORMODE ON, 86

Y

Y-axis, for printing, 75

Z

ZMODEM protocol, 35
Fingerprint Developer’s Guide 148

 Index
Fingerprint Developer’s Guide 149

Worldwide Headquarters

6001 36th Avenue West

Everett, Washington 98203

U.S.A.

tel 425.348.2600

fax 425.355.9551

www.intermec.com

© 2012 Intermec Technologies

Corporation. All rights reserved.

Fingerprint Developer’s Guide

934-067-001
P/N 934-067-001

	Send Feedback
	Before You Begin
	Chapter 1 - Introduction to Fingerprint
	What Is Fingerprint?
	Learning the Structure of Fingerprint Commands
	Fingerprint Operating Modes
	Sending Fingerprint Commands to the Printer

	Chapter 2 - Understanding Fingerprint Syntax
	Learning Fingerprint Syntax
	About Keywords, Statements, and Lines
	About Functions
	About Constants, Variables, and Expressions
	About Operators
	Using Arithmetic Operators
	Using Relational Operators
	Using Logical Operators

	About Devices
	About Immediate Mode
	Sending Command Strings in Immediate Mode

	About Programming Mode
	Using Line Numbers
	Programming Without Line Numbers

	Sending Programs to the Printer
	Commands for Editing Code
	Using Conditional Instructions
	Using an IF...THEN...[ELSE] Instruction
	Using an IF...THEN...[ELSE]...END IF Instruction

	About Branching
	Branching to Subroutines
	Instructions for Conditional Branching
	Using an IF...THEN GOTO...ELSE Instruction
	Using an ON...GOSUB Instruction
	Using an ON...GOTO Instruction
	Using an ON BREAK...GOSUB Instruction
	Using an ON COMSET...GOSUB Instruction
	Using an ON KEY...GOSUB Instruction

	Unconditional Branching Using a GOTO Statement
	Branching to an Error-Handling Subroutine
	Using an ON ERROR GOTO Instruction
	Resuming Execution After Error Handling

	About Loops
	Using a FOR...NEXT Instruction
	Using a WHILE...WEND Instruction

	Structuring Your Program
	Executing the Program
	Writing, Executing, and Listing a Short Program

	Breaking Program Execution
	Using a BREAK Statement
	Using a BREAK...ON or BREAK...OFF Statement
	Using an ON BREAK ...GOSUB...Statement

	Saving the Program
	Naming the Program
	Protecting the Program
	Saving Without Line Numbers
	Making Changes
	Making Copies of Programs
	Renaming a Program
	Creating a Startup Program

	Chapter 3 - Managing Files
	Using Directories in the Printer File System
	Using Path Shortcuts

	About File Types
	Commands for Listing Files
	Listing a File With the FILELIST Program

	Commands for Creating and Managing Program Files
	Commands for Creating and Managing Data Files
	Commands for Transferring Text and Binary Files
	Using the TRANSFER KERMIT Statement
	Using the ZMODEM Protocol
	Using a TRANSFER STATUS Statement

	Commands for Transferring Files Between Printers
	Checking Transferred Files With CHECKSUM

	Commands for Working With Arrays
	Specifying Array Dimensions Using DIM
	Sorting Arrays
	Splitting String Expressions
	Calculating String Array Checksums

	Chapter 4 - Managing Input and Output
	Preprocessing Input Data
	Modifying Character Sets Using a MAP Statement
	Choosing a Character Set with a NASC Statement

	Converting Input Data
	Generating Random Numbers
	Calling the RANDOM Function
	Using a RANDOMIZE Statement

	Setting the Standard IN and OUT Channels
	Input From a Host
	Input From Sequential Files
	Reading Data to a Variable With INPUT#
	Reading a Specific Data Length With INPUT$
	Reading a Line to a Variable With LINE INPUT#
	Close a File
	Verify the End of a File With EOF
	Counting Data Blocks with LOC
	Determining File Length with LOF

	Input From a Random File
	Creating a Buffer with FIELD
	Copying a Specific Field with GET
	Closing a File
	Finding the Last Field Read with LOC
	Determining File Length with LOF

	Input From the Printer Keypad
	Controlling Communication
	Using BUSY or READY Statements
	Using an ON LINE | OFF LINE Statement
	Controlling Printer Response with VERBON | VERBOFF

	Managing Background Communication
	Background Communication Example
	Retrieving Buffer Status With LOC or LOF
	Setting Up RS-422 Communication

	Output to the Standard OUT Channel
	Printing Expressions With PRINT
	Printing Characters by ASCII Values With PRINTONE

	Redirecting Output to a File
	Output to Sequential Files
	Using an OPEN Statement
	Printing Expressions to a Sequential File With PRINT#
	Printing Characters by ASCII Values With PRINTONE#
	Using a CLOSE Statement
	Counting Data Blocks and Determining File Length With LOC and LOF

	Output to Random Files
	Opening a File for Random Input or Output With OPEN
	Creating a Buffer With FIELD
	Left or Right Justifying Data With LSET and RSET
	Transferring Data to the File with PUT
	Using a CLOSE Statement
	Finding the Last Field Read and Determining File Length With LOC and LOF

	Output to Communication Channels
	Output to the Printer Display

	Chapter 5 - Managing Fonts, Bar Codes, and Images
	Managing Fonts
	About Font Types
	Selecting Fonts
	Controlling Font Direction, Size, Slant, and Width
	Adding and Removing Fonts
	Creating and Using Font Aliases

	About Bar Code Symbologies
	General Rules for Bar Code Printing
	Commands for Working With Bar Codes

	Understanding Images and Image Files
	Standard Images
	Downloading Image Files
	Listing Images
	Removing Images and Image Files

	Chapter 6 - Designing Bar Code Labels
	Creating a Layout With Fields
	Positioning Fields in the Layout
	About Units of Measure
	About Insertion and Anchor Points
	About Print Directions
	Checking the Current Position
	Checking the Size and Position of a Field

	Creating Single-Line and Multi-Line Text Fields
	Specifying a Typeface with FONT
	Inverting Black and White Printing with NORIMAGE or INVIMAGE
	Specifying Text for Printing with PRTXT
	Defining Borders With PRBOX
	Summary for Text Fields

	Creating Bar Code Fields
	Specifying a Bar Code Symbology With BARSET
	Choosing the Human-Readable Font with BARFONT
	Specifying Input Data with PRBAR
	Summary for Bar Code Fields

	Creating Image Fields
	Magnifying Images with MAG
	Inverting Black and White Printing with NORIMAGE or INVIMAGE
	Specifying Images by Filename with PRIMAGE
	Summary for Image Fields

	Creating Boxes
	Summary for Boxes

	Creating Lines
	Summary for Lines

	Additional Printing Instructions
	Printing Partial Fields With the CLIP ON Command
	Inverting Intersection Printing With XORMODE

	Using the LAYOUT Command
	About Layout Requirements
	Creating a Logotype Name File
	Creating a Data File or Array
	Creating an Error File or Array
	Creating an Error Array
	Creating an Error File

	Using the Files in a LAYOUT Statement

	Creating a Simple Label
	Handling Errors With ERRHAND.PRG
	Renumbering Lines When Merging Files
	Merging Programs
	Using the Print Key

	Chapter 7 - Controlling the Printer
	Using Fingerprint to Control the Printer
	Controlling Media Feed
	Adjusting Media Feed Distance With TESTFEED
	Feeding Media With FORMFEED
	Overriding Start and Stop Adjust Values With LBLCOND
	Rotating the Platen Roller With CLEANFEED
	Checking Media Feed Distance With ACTLEN

	Controlling Printing
	Enabling the Automatic Paper Cutter With CUT ON
	Enabling the Label Taken Sensor With LTS& ON
	Repeating the Last Printing Operation With PRINTFEED
	Enabling Manual Printing With PRINT KEY ON
	Checking the Transfer Ribbon and Printhead With SYSVAR
	Handling Faulty Dots With HEAD, SET FAULTY DOT, and BARADJUST
	Checking Printhead Status With FUNCTEST or FUNCTEST$
	Reprinting Labels After Interruptions
	About Batch Printing
	Clearing the Print Buffer With CLL and FIELDNO
	Maintaining Print Speed With OPTIMIZE “BATCH” ON
	Interrupting Batch Printing

	Using the Printer Keypad
	Branching to Subroutines With KEY...ON and ON KEY...GOSUB
	Defining Audio Beeps With KEY BEEP
	Entering ASCII Characters With INPUT#, INPUT$, or LINE INPUT#
	Remapping the Keypad With KEYBMAP$
	Using the Keypad in Immediate Mode

	Using the Printer Display
	Customizing the Printer Display

	Controlling the LEDs and Beeper
	Using an LED ON|OFF|BLINK Statement
	Using a BEEP or SOUND Statement

	Setting the Date and Time
	Reading the Clock and Calendar

	Using Setup Mode Programmatically
	Reading the Current Setup
	Creating a Setup File
	Changing the Setup Using a Setup File
	Changing the Setup Using a Setup String
	Saving the Setup

	Using the SYSVAR System Variable
	Checking Hardware and Firmware Versions
	Checking Immediate Mode and STDIO Status
	Restarting the Printer
	About Printer Memory
	Permanent Memory
	Temporary Memory
	Other Memory Devices
	Changing the Current Directory
	Checking Free Memory
	Providing More Free Memory
	Formatting the Permanent Memory

	Using the Industrial Interface

	Chapter 8 - Error Handling
	Standard Error Handling
	Choosing an Error Message Format

	Checking for Programming Errors
	Using a TRON|TROFF Statement
	Using STOP and CONT Statements
	Specifying Breakpoints

	Commands for Error-Handling Routines
	Branching to Subroutines With ON ERROR GOTO...
	Checking Error Codes with ERR and ERL
	Resuming Execution After Errors
	Returning Print Job and Printhead Status with PRSTAT
	Error Handling Example

	Using the ERRHAND.PRG Utility Program
	Modifying ERRHAND Variables and Subroutines
	Complete Listing of ERRHAND.PRG
	Extensions to ERRHAND.PRG

	Standard Error Codes

	Appendix A - Character Sets and Keywords
	Introduction to Character Sets
	About the UTF-8 Character Set
	Example

	Reserved Keywords and Symbols
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

