MICRO SWITCH Technology

APPLICATIONS

Presence
Detection
Ensures door latching and safe operation

Float Switch
On/off power to stop overflow conditions

Flow Switch
Enables safe and efficient water usage

Power Switch
Reliable system control for motors, pumps, fans

Operator Controls
Interface control for system auxiliary functions

VALUE PROPOSITION

The V19, Honeywell's unsealed MICRO SWITCH family provides a cost-conscious switch solution to assist in hitting overall system-level cost and design goals in high volume applications. The V19 switch provides a fully certified, reliable, and repeatable solution over the lifetime of the product. RAST 2.5, 5, and 7 termination styles available for automated manufacturing requirements (white goods).

V19 FEATURES	V19 BENEFITS	OUR VALUE
5 A \& 16 A	Electrical ratings for design flexibility in one industry standard package size	Competitive cross references available
> 1M mechanical operations	Globally certified for reliable, repeatable actuation for life	Snap-spring mechanism with more than 80 years of MICRO SWITCH service
UL/CSA, cUL, CE, UKCA, ENEC, CQC	Identical system designs for platform applications worldwide	Certifications enable global design acceptance and cost savings in agency approvals
Cadmium-free contacts	RoHS 3, REACH and CalProp 65 compliant	
RAST 2.5 termination and housing	Enables IDT termination for automated machinery builds on signal-level and control circuits	Combined terminal and housing construction enables agency certification (UL94V-O \& IEC 60335-1) and material cost savings

MICRO SWITCH

 V19 SERIESUnless otherwise stated, all characteristic measurements tested according to UL, EN, and IEC standards and conditions. Parameters and acceptance criteria validated and confirmed in a certified lab environment. Technical details available upon request.

| TABLE 1. PERFORMANCE SPECIFICATIONS | |
| :--- | :--- | :--- |
| CHARACTERISTIC | MEASURE |
| Circuitry | SPDT, SPNO, SPNC |
| Operating force | $0,15 \mathrm{~N}$ to $3,92 \mathrm{~N}[15 \mathrm{~g}$ to 400 g$]$ |
| Termination | quick connect; $6,35 \mathrm{~mm} \times 0,80 \mathrm{~mm}[0.250 \mathrm{in} \times 0.032 \mathrm{in}]$
 quick connect $4,80 \mathrm{~mm} \times 0,50 \mathrm{~mm}[0.187 \mathrm{in} \times 0.020 \mathrm{in}]$
 RAST-5 250\#; RAST-7 250\#; RAST-2.5
 straight PCB |
| Actuators | pin plunger, integral lever options |
| Agency certification | ENEC, CQC, UL, cUL, CE, UKCA |

TABLE 2. ELECTRICAL SPECIFICATIONS		
RATING/NOMENCLATURE CODE	UL/CUL (CUL 61058-1, FILE 12252) AMERICAS	ENEC (IEC 61058-1) EUROPE CQC (GB15092-1) ASIA-PACIFIC
05	```5 GPA 125/250 Vac; 6 GPA 125/250 Vac 1/10 HP 125/250 Vac 0.4 RA 125 Vdc; 0.3 RA 250 Vdc 10,000 cycles```	5 (2.5) A 125/250 Vac, 6 (2.5) A 125/250 Vac 0.4 A $125 \mathrm{Vdc}, 0.3$ A 250 Vdc 10,000 cycles
16	16 GPA 125/250 Vac 1/2 HP 125/250 Vac 0.6 RA 125 Vdc ; 0.3 RA 250 Vdc 10,000 cycles	16 (4) A 250 Vac 0.6 A 125 Vdc; 0.3 A 250 Vdc 10,000 cycles
	- RA = Resistive Amps (Resistive Load) - GPA = General Purpose Amps (Inductive Load, 75% to 80% power factor) - VL = Lamp Load	- $X X(Y)=X X$ max. resistive value (Amps) and (Y) max. inductive value (Amps)

Figure 1. Product Nomenclature

MICRO SWITCH V19 SERIES

FIGURE 2. LOAD LIFE CURVES

The data used to develop the following load-life curves was obtained through actual laboratory testing under controlled ambient conditions. It does not attempt to include or address specific application variables, and is meant as a representative guide to potential performance expectations of Honeywell V19 Series switches.

The following graphs, showcasing general reliability expectations, was developed from lab tested electrical lifetime data. Subsequent reliability calculations were based on:

- Life curve regression analysis was used for mean life cycles to achieve a smooth life curve
- To determine the mean life cycles for all currents, the Weibull distribution method was used
- From the regression analysis, the best fit life curves were determined based on data rankings

Tests representing the V19S05 design (5 A variant) were conducted at three
(3) intermittent current levels: 2 A ,
3.5 A and 5 A. Similarly, tests representing the V19T16 design (16 A variant) were executed at four (4) intermittent current levels: $3 \mathrm{~A}, 7 \mathrm{~A}, 12 \mathrm{~A}$ and 16 A . All switches used to obtain data for these calculations were tested until failure occurred. For the purposes of this evaluation, failure was defined as ten (10) cumulative faults to change electrical state.

MTTF = Mean Time To failure
$\mathrm{B} 10=$ The number of cycles at which 10 \% of the V19 switches will reach failure

GRAPH 1. LIFE CURVE FOR V19S05 SWITCH DESIGN		
MTTF (cycles)	Amperage	B10 (cycles)
$1,236,551$	2	513,167
855,118	3.5	412,696
501,921	5	286,561

* All cycle values shown with 90% confidence interval

GRAPH 2. LIFE CURVE FOR V19T16 SWITCH DESIGN

MTTF (cycles)	Amperage	B10 (cycles)
$1,929,593$	3	$1,662,559$
408,988	7	271,069
63,020	12	40,816
21,504	16	14,645

* All cycle values shown with 90% confidence interval

MICRO SWITCH
V19 SERIES

Abbreviation	Term	Definition
OP	Operating Position	position that the switch contacts change state
PT	Pretravel	distance the actuator moves to trigger the switch
DT	Differential Travel	distance between the OP and the RP
OT	Overtravel	max distance the actuator can move past the OP
RP	Release Point	point that contacts return to free state from OP

TABLE 3. CONFIGURATIONS AND CHARACTERISTICS										
	$\begin{aligned} & z \\ & \text { 은 } \\ & \frac{1}{4} \\ & \frac{1}{4} \stackrel{2}{2} \end{aligned}$						$\begin{aligned} & \xi \\ & \vdots \\ & \hline \end{aligned}$	$\frac{\dot{x}_{2}^{2}}{2} \underline{E}$	$\begin{aligned} & \frac{x}{x} \\ & \sum_{2}^{x} E \\ & 5 \end{aligned}$	$\frac{\dot{z}}{\sum_{i}} \underset{\xi}{\xi}$
A	Roller lever (05)		5 A	015	30	4	20,7 $\pm 0,6$	1,6	0,9	0,8
			5 A	025	35	8				
			5 A	050	70	8				
			5 A and 16 A	100	140	15				
			5 A and 16 A	200	240	50				
			16 A	300	340	50				
			16 A	400	480	50				
	Long roller (06)		5 A	015	10	2	$20,7 \pm 1,2$	4,0	2,7	1,6
			5 A	025	15	2				
			5 A	050	30	4				
			5 A and 16 A	100	50	10				
			5 A and 16 A	200	125	14.3				
			16 A	300	150	40				
			16 A	400	250	25.5				
B	Pin plunger		5 A	015	15	2	14,7 $\pm 0,4$	1,2	0,4	1,0
			5 A	025	25	5				
			5 A	050	60	8				
		Ω	5 A and 16 A	100	100	15				
			5 A and 16 A	200	200	50				
			16 A	300	300	75				
			16 A	400	400	150				
	Short straight (01)		5 A	015	10	2	$15,7 \pm 0,5$	2,0	1,2	1,1
			5 A	025	15	3				
			5 A	050	35	5				
			5 A and 16 A	100	65	8				
			5 A and 16 A	200	130	16				
			16 A	300	150	45				
			16 A	400	300	75				
	Standard straight (02)		5 A	015	5	2	$15,9 \pm 1,2$	4,0	2,0	2,5
			5 A	025	10	2				
			5 A	050	20	3				
			5 A and 16 A	100	35	4				
			5 A and 16 A	200	70	8				
			16 A	300	75	25				
			16 A	400	130	40				
Abbreviation		Term	Definition							
OP	Operating Position		position that the switch contacts change state							
PT	Pretravel		distance the actuator moves to trigger the switch							
DT	Differential Travel		distance between the OP and the RP							
OT	Overtravel		max distance the actuator can move past the OP							
RP	Release Point		point that contacts return to free state from OP							

MICRO SWITCH
V19 SERIES

MICRO SWITCH

 V19 SERIES
MOUNTING DIMENSIONS

Figure 3. V19 Series Standard Switch Dimensions

Figure 4. V19 Series Housing DimensionS

Figure 5. V19 Series RAST 2.5 Switch Dimensions

CONNECTION DIMENSIONS

Figure 6. V19 Series C-style Quick Connect • $6,35 \mathrm{~mm}$ wide $\times 0,8 \mathrm{~mm}$ thick [0.25 in wide $\times 0.031$ in thick]

Figure 8. V19 Series E-style Quick Connect • $4,80 \mathrm{~mm}$ wide $\times 0,5 \mathrm{~mm}$ thick [0.189 in wide $\times 0.020$ in thick]

Figure 7. V19 Series H-style RAST-5 250\# Connector

Figure 9. V19 Series N-style RAST-7 250\# Connector

Figure 10. V19 Series P-Style straight pcb terminal

STANDARD LEVER OPTIONS • DIMENSIONS

Figure 11. V19 Series A01/Straight Short Lever

Figure 13. V19 Series A03/Long Straight Lever

Figure 15. V19 Series A05/Short Roller Lever

Figure 12. V19 Series A02/Standard Straight Lever

Figure 14. V19 Series A04/Simulated Roller Lever

Figure 16. V19 Series A06/Roller Lever

NOTE: These dimensions apply for the " A " lever position. For the " B " lever
position, please add $5,8 \mathrm{~mm}$ [0.224 in].

HONEMWELLUNSEALEDVBASIC PORTFOLO

Target
 Market
 Applications requiring precision, long term reliability, and design flexibility in electrical ratings

Differentiator
Wide range of max operating force and precise differential travel specs key for a more accurate switch actuation

MIL-PRF-8805 listings available

Options

V3 family designed for rugged applications where reliability and repeatability is key

Cost sensitive applications requiring configurability in actuation, termination, and operating characteristics

Industry standard switch footprint and global certifications ideal for "low-cost-of-failure" applications

Multiple Contact Material Options

Contact variants to enable design and regulation compliance

Applications in major and small appliances or designs that require simple configurations

Provides balance between cost and performance in high-volume switch applications

RAST Termination

Multiple RAST standard terminal options for optimizing automated manufacturing processes

RELATED DOCUMENTATION

- Basics Range Guide
- V Basic Switch Comparison
- Subminiature Basic Comparison
- Large Basic Comparison
- Sealed Basic Comparison
- Applying Precision Switches
- V7 Datasheet
- V15 Datasheet

FOR MORE INFORMATION

Honeywell Sensing and Safety Technologies services its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing, or the nearest Authorized Distributor, visit sps.honeywell.com/ast or call:

USA/Canada
+302 6134491
Latin America
+1 3058058188
Europe
+44 1344238258
Japan
Singapore
+81 (0) 3-6730-7152

Greater China +864006396841

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship during the applicable warranty period. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgment or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items that Honeywell, in its sole discretion, finds defective. The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While Honeywell may provide application assistance personally, through our literature and the Honeywell web site, it is buyer's sole responsibility to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this writing. However, Honeywell assumes no responsibility for its use.

WARNING IMPROPER INSTALLATION

- Consult with local safety agencies and their requirements when designing a machine-control link, interface and all control elements that affect safety.
- Strictly adhere to all installation instructions.
Failure to comply with these instructions could result in death or serious injury.

WARNING MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

Honeywell

Sensing and Safety Technologies

830 East Arapaho Road
Richardson, TX 75081
sps.honeywell.com/ast

