

Product Data Sheet

Product Datasheet

T3NDH Nitrogen Dioxide Transmitter

Document Purpose

The purpose of this document is to present the performance specification of the T3NDH transmitter.

This document should be used in conjunction with Operating Principles (OP12) and the Product Safety Datasheet (PSDS 5).

The data provided in this document are valid at 20°C, 50% RH and 1013 mBar for 3 months from the date of sensor manufacture. For guidance on sensor performance outside of these limits, please refer to the Operating Principles.

Output signal can drift below the lower limit over time. For guidance on the safe use of the sensor, please refer to the Operating Principles.

Doc. Ref.: t3ndh.indd Issue 7 ECN I 4719

23rd January 2017

Nitrogen Dioxide (NO₂) Gas Sensor with Transmitter

T3NDH CiTicel

Product Data Sheet

Key Features & Benefits: Robust 3-Series packaging

Industry standard 4-20 mA output

Technical Specifications

MEASUREMENT

Sensor Type Used | 3NDH Filter None

> Output 4-20 mA d.c.

Response Time $(T_{90})^*$ <35 Seconds at 20°C

Resolution 0.1 ppm

Zero Shift (-20°C to +40°C) | < 0.2 ppm equivalent

Repeatability 2% of signal **Linearity** Linear

ELECTRICAL

Power Supply Required | 10 - 35 VDC single-ended **Output Impedance**

 $4 M\Omega$

Via built-in span and zero Calibration

potentiometers

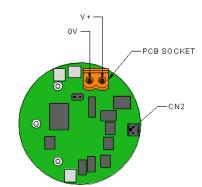
MECHANICAL

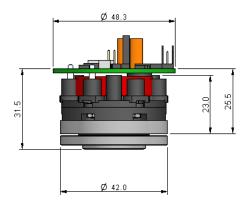
Mounting | Via mounting nose supplied Weight | 58 g including mounting accessory

Position Sensitivty | None

ENVIRONMENTAL

Operating Temperature Range | -20°C to +50°C Recommended Storage Temp 0°C to 20°C Temperature Compensation None Operating Pressure Range | Atmospheric ± 10%


Pressure Coefficient | No data


Operating Humidity Range | 15 - 90% RH non-condensing

LIFETIME

Long Term Sensitivity Drift* <2% signal loss/month Expected Operating Life Two years in air **Storage Life** 6 months in CTL container

Product Dimensions

All dimensions in mm All tolerances ±0.15 mm unless otherwise stated

RANGES AVAILABLE

3NDH CiTiceL 4-20 mA Transmitters are available with the following precalibrated ranges, and can be recalibrated to intermediate ranges.

Range	Order Code	
0-5 ppm	TG3A-1A	
0-10 ppm	TG3B-1A	
0-20 ppm	TG3C-1A	
0-30 ppm	TG3D-1A	
0-50 ppm	TG3E-1A	
0-100 ppm	TG3F-1A	
0-200 ppm	TG3G-1A	
0-300 ppm	TG3H-1A	

* Specifications are valid at 20°C, 50% RH and 1013 mBar, using City Technology recommended circuitry. Performance characteristics outline the performance of sensors supplied within the first 3 months. Output signal can drift below the lower limit over time.

Doc. Ref.: t3ndh.indd Issue 7 ECN I 4719

23rd January 2017

Page 2 of 3

Product Data Sheet

Poisoning

CiTiceLs are designed for operation in a wide range of environments and harsh conditions. However, it is important that exposure to high concentrations of solvent vapours is avoided, both during storage, fitting into instruments and operation.

When using sensors with printed circuit boards (PCBs), degreasing agents should be used before the sensor is fitted. Do not glue directly on or near the CiTiceL as the solvent may cause crazing of the plastic.

Cross Sensitivity Table

Whilst CiTiceLs are designed to be highly specific to the gas they are intended to measure, they will still respond to some degree to various other gases. The table below is not exclusive and other gases not included in the table may still cause a sensor to react.

IMPORTANT NOTE: The cross sensitivity data shown below does not form part of the product specification and is supplied for guidance only. Values quoted are based on tests conducted on a small number of sensors and any batch may show significant variation. For the most accurate measurements, an instrument should be calibrated using the gas under investigation.

Gas	Concentration Used (ppm)	3NDH (ppm NO ₂)
Carbon Monoxide, CO	300	0
Hydrogen Sulfide, H ₂ S	15	-1.5 < x < 0
Sulfur Dioxide, SO ₂	5	-0.05 < x < 0
Nitric Oxide, NO	35	0
Chlorine, Cl ₂	1	≈ 1
Hydrogen , H ₂	100	0
Hydrogen Cyanide, HCN	10	0

SAFETY NOTE

This sensor is designed to be used in safety critical applications. To ensure that the sensor and/or instrument in which it is used, are operating properly, it is a requirement that the function of the device is confirmed by exposure to target gas (bump check) before each use of the sensor and/or instrument. Failure to carry out such tests may jeopardize the safety of people and property.

Every effort has been made to ensure the accuracy of this document at the time of printing. In accordance with the company's policy of continued product improvement City Technology Limited reserves the right to make product changes without notice. The products are always subject to a programme of improvement and testing which may result in some changes in the characteristics quoted. As the products may be used by the client in circumstances beyond the knowledge and control of City Technology Limited, we cannot give any warranty as to the relevance of these particulars to an application. It is the clients' responsibility to carry out the necessary tests to determine the usefulness of the products and to ensure their safety of operation in a particular application.

Doc. Ref.: t3ndh.indd Issue 7 ECN I 4719

23rd January 2017

CITY TECHNOLOGY ENGINEERING SAFETY

